9.1 – Graphing Quadratic Functions. Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5.

Slides:



Advertisements
Similar presentations
5.2 Properties of Parabolas
Advertisements

5.1 Modeling Data with Quadratic Functions. Quadratic Function: f(x) = ax 2 + bx + c a cannot = 0.
How long does a firework
QUADTRATIC RELATIONS Standard Form.
13.2 Solving Quadratic Equations by Graphing CORD Math Mrs. Spitz Spring 2007.
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
Essential Question: How do you determine whether a quadratic function has a maximum or minimum and how do you find it?
Quadraticsparabola (u-shaped graph) y = ax2 y = -ax2 Sketching Quadratic Functions A.) Opens up or down: 1.) When "a" is positive, the graph curves upwards.
Solving Quadratic Equation by Graphing
10.1 Graphing Quadratic Functions p. 17. Quadratic Functions Definition: a function described by an equation of the form f(x) = ax 2 + bx + c, where a.
Graphing Quadratic Equations Standard Form & Vertex Form.
Solving Quadratic Equations by Graphing Quadratic Equation y = ax 2 + bx + c ax 2 is the quadratic term. bx is the linear term. c is the constant term.
9.3 Graphing Quadratic Functions
Graphing Quadratic Equations
Chapter 10.1 Notes: Graph y = ax 2 + c Goal: You will graph simple quadratic functions.
Graphing Quadratic Functions (2.1.1) October 1st, 2015.
Unit 1: Function Families Lesson 5: Transformations & Symmetry Notes Graph y = ax 2 + bx + c.
GRAPHING QUADRATIC FUNCTIONS
7-3 Graphing quadratic functions
Chapter 9.1 Notes. Quadratic Function – An equation of the form ax 2 + bx + c, where a is not equal to 0. Parabola – The graph of a quadratic function.
4.1 Graph Quadratic Functions in Standard Form
Chapter 6-1 Graphing Quadratic Functions. Which of the following are quadratic functions?
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
Graphing Quadratic Functions A quadratic function is an equation of the form: y = ax 2 + bx + c.
Chapter 10 Sec 1 Graphing Quadratic Functions. 2 of 12 Algebra 1 Chapter 10 Sections 1 1.Find a =, b =, c =. 2.Find y intercept = (0, c). 3.Find Axis.
Unit 9 Review Find the equation of the axis of symmetry, along with the coordinates of the vertex of the graph and the y-intercept, for the following equation.
Graphing quadratic functions part 2. X Y I y = 3x² - 6x + 2 You have to find the vertex before you can graph this function Use the formula -b 2a a = 3.
Big Idea: -Graph quadratic functions. -Demonstrate and explain the effect that changing a coefficient has on the graph. 5-2 Properties of Parabolas.
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
Quadratic Functions. 1. The graph of a quadratic function is given. Choose which function would give you this graph:
How does the value of a affect the graphs?
Solving Quadratic Equation by Graphing Students will be able to graph quadratic functions.
4.2 Standard Form of a Quadratic Function The standard form of a quadratic function is f(x) = ax² + bx + c, where a ≠ 0. For any quadratic function f(x)
10-2 Graphing Quadratic Functions. Quadratic Functions (y = ax 2 +bx+c) When a is positive, When a is negative, When c is positive When c is negative.
How To Graph Quadratic Equations Standard Form.
Do Now Find the value of y when x = -1, 0, and 2. y = x2 + 3x – 2
5-2 Properties of Parabolas
Graphing Quadratic Functions in Standard Form
Quadratic Equations Chapter 5.
How long does a firework
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
Properties of Quadratic Functions in Standard Form 5-1
How to Graph Quadratic Equations
How To Graph Quadratic Equations
Homework Review: Sect 9.1 # 28 – 33
parabola up down vertex Graph Quadratic Equations axis of symmetry
Quadratic Functions.
CHAPTER 6 SECTION 1 GRAPHING QUADRATIC FUNCTIONS
3.1 Quadratic Functions and Models
Find the x-coordinate of the vertex
Notes 5.4 (Day 3) Factoring ax2 + bx + c.
Warm Up Graph:
Graphing Quadratic Functions (2.1.1)
How To Graph Quadratic Equations.
Review: Simplify.
Quadratic Functions in the Form y = a(x – h)2 + k
Some Common Functions and their Graphs – Quadratic Functions
3.1 Quadratic Functions and Models
Unit 9 Review.
Graphing Quadratic Functions
How To Graph Quadratic Equations.
4.1 Notes – Graph Quadratic Functions in Standard Form
4.9 Notes – Graph and Solve Quadratic Inequalities
Section 10.2 “Graph y = ax² + bx + c”
Quadratic Functions Graphs
Warm Up.
Graphing Quadratic Functions
9-3 Graphing y = ax + bx + c up 1a. y = x - 1 for -3<x<3
How To Graph Quadratic Equations.
Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.
Presentation transcript:

9.1 – Graphing Quadratic Functions

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 y = 2(-2) 2 – 4(-2) – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 y = 2(-2) 2 – 4(-2) – 5 y = – 5 = 11 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 y = 2(-2) 2 – 4(-2) – 5 y = – 5 = 11 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 y = 2(-2) 2 – 4(-2) – 5 y = – 5 = 11 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

b. y = -x 2 + 4x – 1 xy

Axis of symmetry:

Axis of symmetry: x = - b 2a

Vertex:

Axis of symmetry: x = - b 2a Vertex: (x, y)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x = axis of sym.

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x = axis of sym. Maximum vs. Minimum:

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x = axis of sym. Maximum vs. Minimum: For ax 2 + bx + c,

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x = axis of sym. Maximum vs. Minimum: For ax 2 + bx + c, –If a is positive, then the vertex is a Minimum.

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x = axis of sym. Maximum vs. Minimum: For ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum.

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function.

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.:

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b 2a

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2 2a 2(-1)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex:

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1,

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1) + 3

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1) = 4

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1) = 4, so (1, 4)

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1) = 4, so (1, 4) 3) Max OR Min.?

Axis of symmetry: x = - b 2a Vertex: (x, y), where the x-value = axis of sym. Maximum vs. Minimum: For the form ax 2 + bx + c, –If a is positive, then the vertex is a Minimum. –If a is negative, then the vertex is a Maximum. Ex. 2 Write the equation of the axis of symmetry, and find the coordinates of the vertex fo the graph of each function. Identify the vertex as a max or min. Then graph the function. a. -x 2 + 2x + 3 1) axis of sym.: x = - b = - 2= -2 = 1 2a 2(-1) -2 2) vertex: (x, y) = (1, ?) -x 2 + 2x + 3 -(1) 2 + 2(1) = 4, so (1, 4) 3) Max OR Min.? (1, 4) is a max b/c a is neg.

4) Graph:

*Plot vertex:

4) Graph: *Plot vertex: (1, 4)

4) Graph: *Plot vertex: (1, 4) *Make a table based on vertex

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy 14

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy 0 14

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy 0 14

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy

4) Graph: *Plot vertex: (1, 4) * Make a table based on vertex xy

b. 2x 2 – 4x – 5

1) axis of sym.: 2) vertex: (x, y) = 3) Max OR Min.? 4) Graph:

b. 2x 2 – 4x – 5 1) axis of sym.: x = - b = -(-4)= 4 = 1 2a 2(2) 4 2) vertex: (x, y) = (1, ?) 2x 2 – 4x – 5 2(1) 2 – 4(1) – 5 2 – 4 – 5 = -7, so (1, -7) 3) Max OR Min.? (1, -7) is a min b/c a is neg. 4) Graph: *Plot vertex: (1, -7) * Make a table based on vertex xy