Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Ch 7.6: Complex Eigenvalues
Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Chapter 2: Second-Order Differential Equations
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 5.7: Series Solutions Near a Regular Singular Point, Part II
A second order ordinary differential equation has the general form
Ch 5.6: Series Solutions Near a Regular Singular Point, Part I
Ch 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients
Ch 3.3: Complex Roots of Characteristic Equation Recall our discussion of the equation where a, b and c are constants. Assuming an exponential soln leads.
Ch 3.4: Repeated Roots; Reduction of Order
Ch 5.4: Euler Equations; Regular Singular Points
Ch 5.5: Euler Equations A relatively simple differential equation that has a regular singular point is the Euler equation, where ,  are constants. Note.
Ch 3.5: Repeated Roots; Reduction of Order
Boyce/DiPrima 10th ed, Ch 10.2: Fourier Series Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.5: Separation of Variables; Heat Conduction in a Rod Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9th ed, Ch 8.4: Multistep Methods Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard.
Math 3120 Differential Equations with Boundary Value Problems
Second Order Equations Complex Roots of the Characteristic Equation.
Boyce/DiPrima 9 th ed, Ch 11.5: Further Remarks on Separation of Variables: A Bessel Series Expansion Elementary Differential Equations and Boundary Value.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Differential Equations MTH 242 Lecture # 13 Dr. Manshoor Ahmed.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Ch 3.4: Complex Roots of Characteristic Equation Recall our discussion of the equation where a, b and c are constants. Assuming an exponential soln leads.
Only One Word for Review Review Engineering Differential Equations The Second Test.
Ch 2.1: Linear Equations; Method of Integrating Factors A linear first order ODE has the general form where f is linear in y. Examples include equations.
Math 3120 Differential Equations with Boundary Value Problems
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Ch 4.2: Homogeneous Equations with Constant Coefficients Consider the nth order linear homogeneous differential equation with constant, real coefficients:
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
SECONDD ORDER LINEAR DIFFERENTIAL EQUATIONS
Linear Equations Constant Coefficients
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
A second order ordinary differential equation has the general form
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Ch 4.2: Homogeneous Equations with Constant Coefficients
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Presentation transcript:

Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc. Recall our discussion of the equation where a, b and c are constants. Assuming an exponential soln leads to characteristic equation: Quadratic formula (or factoring) yields two solutions, r1 & r2: If b2 – 4ac < 0, then complex roots: r1 =  + i, r2 =  - i Thus

Euler’s Formula; Complex Valued Solutions Substituting it into Taylor series for et, we obtain Euler’s formula: Generalizing Euler’s formula, we obtain Then Therefore

Real Valued Solutions Our two solutions thus far are complex-valued functions: We would prefer to have real-valued solutions, since our differential equation has real coefficients. To achieve this, recall that linear combinations of solutions are themselves solutions: Ignoring constants, we obtain the two solutions

Real Valued Solutions: The Wronskian Thus we have the following real-valued functions: Checking the Wronskian, we obtain Thus y3 and y4 form a fundamental solution set for our ODE, and the general solution can be expressed as

Example 1 (1 of 2) Consider the differential equation For an exponential solution, the characteristic equation is Therefore, separating the real and imaginary components, and thus the general solution is

Example 1 (2 of 2) Using the general solution just determined We can determine the particular solution that satisfies the initial conditions So Thus the solution of this IVP is The solution is a decaying oscillation

Example 2 Consider the initial value problem Then Thus the general solution is And The solution of the IVP is The solution is displays a growing oscillation

Example 3 Consider the equation Then Therefore and thus the general solution is Because there is no exponential factor in the solution, so the amplitude of each oscillation remains constant. The figure shows the graph of two typical solutions