Construcción de cladogramas y Reconstrucción Filogenética

Slides:



Advertisements
Similar presentations
Introduction to Molecular Evolution
Advertisements

Phylogenetic Tree A Phylogeny (Phylogenetic tree) or Evolutionary tree represents the evolutionary relationships among a set of organisms or groups of.
. Class 9: Phylogenetic Trees. The Tree of Life Evolution u Many theories of evolution u Basic idea: l speciation events lead to creation of different.
An Introduction to Phylogenetic Methods
1 Dan Graur Methods of Tree Reconstruction. 2 3.
Lecture 13 CS5661 Phylogenetics Motivation Concepts Algorithms.
BALANCED MINIMUM EVOLUTION. DISTANCE BASED PHYLOGENETIC RECONSTRUCTION 1. Compute distance matrix D. 2. Find binary tree using just D. Balanced Minimum.
1 General Phylogenetics Points that will be covered in this presentation Tree TerminologyTree Terminology General Points About Phylogenetic TreesGeneral.
Phylogenetics - Distance-Based Methods CIS 667 March 11, 2204.
Phylogenetic reconstruction
Phylogenetic trees Sushmita Roy BMI/CS 576 Sep 23 rd, 2014.
Phylogenetic trees Level 3 Molecular Evolution and Bioinformatics Jim Provan Page and Holmes: Chapter 2.
Molecular Evolution Revised 29/12/06
Tree Reconstruction.
Lecture 7 – Algorithmic Approaches Justification: Any estimate of a phylogenetic tree has a large variance. Therefore, any tree that we can demonstrate.
Phylogeny Reconstruction II. The edges of tree can be freely rotated without changing the relationships among the terminal nodes. Trees are like mobiles.
Distance methods. UPGMA: similar to hierarchical clustering but not additive Neighbor-joining: more sophisticated and additive What is additivity?
In addition to maximum parsimony (MP) and likelihood methods, pairwise distance methods form the third large group of methods to infer evolutionary trees.
. Class 9: Phylogenetic Trees. The Tree of Life D’après Ernst Haeckel, 1891.
Lecture 24 Inferring molecular phylogeny Distance methods
Building Phylogenies Distance-Based Methods. Methods Distance-based Parsimony Maximum likelihood.
Phylogenetic Analysis. 2 Phylogenetic Analysis Overview Insight into evolutionary relationships Inferring or estimating these evolutionary relationships.
Classification and Phylogenies Taxonomic categories and taxa Inferring phylogenies –The similarity vs. shared derived character states –Homoplasy –Maximum.
Phylogenetic trees Sushmita Roy BMI/CS 576
Phylogenetic analyses Kirsi Kostamo. The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among.
Phylogenetic Analysis. 2 Introduction Intension –Using powerful algorithms to reconstruct the evolutionary history of all know organisms. Phylogenetic.
Terminology of phylogenetic trees
Christian M Zmasek, PhD 15 June 2010.
Molecular evidence for endosymbiosis Perform blastp to investigate sequence similarity among domains of life Found yeast nuclear genes exhibit more sequence.
Phylogenetics Alexei Drummond. CS Friday quiz: How many rooted binary trees having 20 labeled terminal nodes are there? (A) (B)
1 Dan Graur Molecular Phylogenetics Molecular phylogenetic approaches: 1. distance-matrix (based on distance measures) 2. character-state.
COMPUTATIONAL MODELS FOR PHYLOGENETIC ANALYSIS K. R. PARDASANI DEPTT OF APPLIED MATHEMATICS MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY (MANIT) BHOPAL.
Phylogenetic Analysis. General comments on phylogenetics Phylogenetics is the branch of biology that deals with evolutionary relatedness Uses some measure.
Molecular phylogenetics 1 Level 3 Molecular Evolution and Bioinformatics Jim Provan Page and Holmes: Sections
Phylogenetic trees School B&I TCD Bioinformatics May 2010.
BINF6201/8201 Molecular phylogenetic methods
Bioinformatics 2011 Molecular Evolution Revised 29/12/06.
Applied Bioinformatics Week 8 Jens Allmer. Practice I.
OUTLINE Phylogeny UPGMA Neighbor Joining Method Phylogeny Understanding life through time, over long periods of past time, the connections between all.
Phylogenetic Prediction Lecture II by Clarke S. Arnold March 19, 2002.
Phylogenetic Trees  Importance of phylogenetic trees  What is the phylogenetic analysis  Example of cladistics  Assumptions in cladistics  Frequently.
Building phylogenetic trees. Contents Phylogeny Phylogenetic trees How to make a phylogenetic tree from pairwise distances  UPGMA method (+ an example)
Introduction to Phylogenetics
Reconstrucción Filogenética. Una manera simple de entender la evolución…
Calculating branch lengths from distances. ABC A B C----- a b c.
Using traveling salesman problem algorithms for evolutionary tree construction Chantal Korostensky and Gaston H. Gonnet Presentation by: Ben Snider.
Phylogenetic Analysis Gabor T. Marth Department of Biology, Boston College BI420 – Introduction to Bioinformatics Figures from Higgs & Attwood.
Why do trees?. Phylogeny 101 OTUsoperational taxonomic units: species, populations, individuals Nodes internal (often ancestors) Nodes external (terminal,
Doug Raiford Lesson 9.  3 Approaches  Distance  Parsimony  Maximum Likelihood  Have already seen a distance method 12/18/20152Phylogenetics Part.
Phylogeny Ch. 7 & 8.
Phylogenetic trees Sushmita Roy BMI/CS 576 Sep 23 rd, 2014.
Applied Bioinformatics Week 8 Jens Allmer. Theory I.
Ayesha M.Khan Spring Phylogenetic Basics 2 One central field in biology is to infer the relation between species. Do they possess a common ancestor?
1 CAP5510 – Bioinformatics Phylogeny Tamer Kahveci CISE Department University of Florida.
Distance-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 Colin Dewey Fall 2010.
Distance-based methods for phylogenetic tree reconstruction Colin Dewey BMI/CS 576 Fall 2015.
CSCE555 Bioinformatics Lecture 13 Phylogenetics II Meeting: MW 4:00PM-5:15PM SWGN2A21 Instructor: Dr. Jianjun Hu Course page:
What is phylogenetic analysis and why should we perform it? Phylogenetic analysis has two major components: (1) Phylogeny inference or “tree building”
Phylogenetic basis of systematics
Distance based phylogenetics
Inferring a phylogeny is an estimation procedure.
Clustering methods Tree building methods for distance-based trees
Multiple Alignment and Phylogenetic Trees
Endeavour to reconstruct the characters of each hypothetical ancestor.
Patterns in Evolution I. Phylogenetic
Phylogenetic Trees.
#30 - Phylogenetics Distance-Based Methods
Lecture 7 – Algorithmic Approaches
Phylogeny.
Molecular data assisted morphological analyses
Presentation transcript:

Construcción de cladogramas y Reconstrucción Filogenética

DATOS: Alineamiento de secuencias de genes Cómo podemos transformar esta información a un contexto histórico?

Patrón de Electroforesis en Campo Pulsado

Spoligotyping de aislados clínicos de M. tuberculosis Cepas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Dendograma y patrones RFLP de aislados clínicos de M. tuberculosis

Las bandas polimórficas son convertidas en arreglos de 0 y 1 (0=ausencia de banda, 1=presencia de banda) H37Rv 1100111111111111111111111111111111111111111 CDC1551 1111111111111111111111101111011110101111111 H37Ra 1100111111111111111111111111111111111111111 430 1111111111111111111111111111111110111111111 280 1111111111111111111111111111011110111111111 312 1111111111101001111110111111111110111111111 413 1110111111111111111111111100111110111111111 467 1110111111111111111111110111111111111111111 270 1110111111111011111111111111111110111111111 2604 1110111111111001111111111111111111111111101 300 1110111111111001111111111111111111111111101 2651 1110111111101111111111110111111110111111111 593 1110111111101011111111111111111110111111111 372 1110111111101011111111111111111110111111111 545 1110111111101011111111111111111110111111111 271 1110111111101011111111111111111110111111111 558 1110111111101011111111111111111110111111111 397 1110111111101011111111111111111110111111111 552 1110111111101001111111111111111110111111111 466 1110111110111111111111110111111111111111111 465 1110111110111111111111110111111111111111111 340 1110111110111111111111110111111111111111111 339 1110111110111111111111110111111111111111111 345 1110111110111111111111110111111111111111111 346 1110111110111111111111110111111111111111111 452 1100111111111101111111111111110110111111111 H37Pe 1100111111111011111111111111111111111111111

Phylogeny inference Distance based methods -Pair wise distance matrix -Adjust tree branch lengths to fit the distance matrix (ex. Minimum squares, Neighbor joining) 2. Character based methods -Parsimony -Maximum likelihood or model based evolution

In 1866, Ernst Haeckel coined the word “phylogeny” and presented phylogenetic trees for most known groups of living organisms.

Surf the tree of life at: The Tree of Life project Surf the tree of life at: http://tolweb.org/tree/phylogeny.html

What is a tree? A tree is a mathematical structure which is used to model the actual evolutionary history of a group of sequences or organisms, i.e. an evolutionary hypothesis. A tree consists of nodes connected by branches. The ancestor of all the sequences is the root of the tree Internal nodes represent hypothetical ancestors Terminal nodes represent sequences or organisms for which we have data. Each is typically called a “Operational Taxonomical Unit” or OTU.

Types of Trees Bifurcating Multifurcating Polytomy Polytomies: Soft vs. Hard Soft: designate a lack of information about the order of divergence. Hard: the hypothesis that multiple divergences occurred simultaneously

Types of Trees Trees Networks Only one path between any pair of nodes More than one path between any pair of nodes

Comments on Trees Trees give insights into underlying data Identical trees can appear differently depending upon the method of display Information maybe lost when creating the tree. The tree is not the underlying data.

Given a multiple alignment, how do we construct the tree? A - GCTTGTCCGTTACGAT B – ACTTGTCTGTTACGAT C – ACTTGTCCGAAACGAT D - ACTTGACCGTTTCCTT E – AGATGACCGTTTCGAT F - ACTACACCCTTATGAG ?

Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA) First, construct a distance matrix: A - GCTTGTCCGTTACGAT B – ACTTGTCTGTTACGAT C – ACTTGTCCGAAACGAT D - ACTTGACCGTTTCCTT E – AGATGACCGTTTCGAT F - ACTACACCCTTATGAG  A  B  C  D  E  2  4  6  F  8 From http://www.icp.ucl.ac.be/~opperd/private/upgma.html

UPGMA First round  A  B  C  D  E  2  4  6  F  8 dist(A,B),C = (distAC + distBC) / 2 = 4 dist(A,B),D = (distAD + distBD) / 2 = 6 dist(A,B),E = (distAE + distBE) / 2 = 6 dist(A,B),F = (distAF + distBF) / 2 = 8  A,B  C  D  E  4  6  F  8 Choose the most similar pair, cluster them together and calculate the new distance matrix.

UPGMA Second round  A,B  C  D  E  4  6  F  8 Third round  A,B  C  D,E  4  6  F  8

UPGMA AB,C D,E 6 F 8 ABC,DE F 8 Fourth round Fifth round  6  F  8 Fifth round  ABC,DE  F  8 Note the this method identifies the root of the tree.

UPGMA assumes a molecular clock The UPGMA clustering method is very sensitive to unequal evolutionary rates (assumes that the evolutionary rate is the same for all branches). Clustering works only if the data are ultrametric Ultrametric distances are defined by the satisfaction of the 'three-point condition'. The three-point condition: A B C For any three taxa, the two greatest distances are equal.

(Neighbor joining will get the right tree in this case.) UPGMA fails when rates of evolution are not constant A tree in which the evolutionary rates are not equal  A  B  C  D  E  5  4  7  10  6  9  F  8  11 (Neighbor joining will get the right tree in this case.) From http://www.icp.ucl.ac.be/~opperd/private/upgma.html

Character state methods MAXIMUM PARSIMONY Logic: Examine each column in the multiple alignment of the sequences. Examine all possible trees and choose among them according to some optimality criteria Method we’ll talk about Maximum parsimony

Maximum Parsimony Simpler hypotheses are preferable to more complicated ones and that as hoc hypotheses should be avoided whenever possible (Occam’s Razor). Thus, find the tree that requires the smallest number of evolutionary changes. 0123456789012345 W - ACTTGACCCTTACGAT X – AGCTGGCCCTGATTAC Y – AGTTGACCATTACGAT Z - AGCTGGTCCTGATGAC W X Y Z

Maximum Parsimony Start by classifying the sites: 123456789012345678901 Mouse CTTCGTTGGATCAGTTTGATA Rat CCTCGTTGGATCATTTTGATA Dog CTGCTTTGGATCAGTTTGAAC Human CCGCCTTGGATCAGTTTGAAC ------------------------------------ Invariant * * ******** ***** Variant ** * * ** Informative ** ** Non-inform. * *

Mouse CTTCGTTGGATCAGTTTGATA Rat CCTCGTTGGATCATTTTGATA 123456789012345678901 Mouse CTTCGTTGGATCAGTTTGATA Rat CCTCGTTGGATCATTTTGATA Dog CTGCTTTGGATCAGTTTGAAC Human CCGCCTTGGATCAGTTTGAAC ** * Mouse Rat Dog Human G G T T T G G G G G G G Site 5: G C G C T C Mouse Rat Dog Human T T T C C T C C T C T C Site 2: C C C C T C Mouse Rat Dog Human T T G G G G G T T G G T Site 3: T G T G G G

Maximum Parsimony 123456789012345678901 Mouse CTTCGTTGGATCAGTTTGATA Rat CCTCGTTGGATCATTTTGATA Dog CTGCTTTGGATCAGTTTGAAC Human CCGCCTTGGATCAGTTTGAAC Informative ** ** Mouse Rat Dog Human 3 1

EVOLUCIÓN IN VITRO POR INTERMEDIO DE PCR