05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April, 30 2001.

Slides:



Advertisements
Similar presentations
The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.
Advertisements

INDIRECT DARK MATTER SEARCHES WITH HESS J-F Glicenstein IRFU/CEA-Saclay on behalf of the HESS collaboration.
COSMIC RAY ORIGINS Stella Bradbury, University of Leeds, U.K.  -ray sources the cosmic ray connection detection technique galactic and extragalactic.
OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
High-energy particle acceleration in the shell of a supernova remnant F.A. Aharonian et al (the HESS Collaboration) Nature 432, 75 (2004) Nuclear Physics.
Cut off more slowly ~ 50GeV Thompson astro-ph/ Credit: A.K. Harding (NASA/GSFC) Our first target: Crab pulsar/nebula The standard candle for gamma-ray.
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
Mathieu de Naurois, H.E.S.S.High Energy Phenomena in the Galacic Center H.E.S.S. Observations of the Galactic Center  The H.E.S.S. Instrument.
WP-Technology Working Group Future of Ground Based Gamma-ray Astronomy Feb 8, Technology & Cost WP Working Group GOALS With the Current Generation.
Gamma-Ray Astronomy Call no Assoc. Prof. Markus Böttcher Clippinger # 339 Phone:
 Jim Hinton 2006 High Energy Stereoscopic System (H.E.S.S.)  Array of four 107 m 2 telescopes in Namibia, 120 m spacing  5° FOV  Threshold 100 GeV.
Jamie Holder School of Physics and Astronomy, University of Leeds, U.K Increasing the Collection Area for IACTs at High Energies Future of Gamma Ray Astronomy.
The signature of the nearby universe on the very high energy diffuse gamma sky Århus, November 2006 Troels Haugbølle Institute for.
The Transient Universe: AY 250 Spring 2007 New High Energy Telescopes Geoff Bower.
Large Magellanic Cloud, 1987 (51.4 kparsec) SN 1987a after before 2006 Hubble.
The Spectrum of Markarian 421 Above 100 GeV with STACEE Jennifer Carson UCLA / Stanford Linear Accelerator Center February MeV 1 GeV 10 GeV 100.
The future of ground-based gamma ray astronomy Where do we go?
Gamma-ray Astrophysics Pulsar GRB AGN SNR Radio Galaxy The very high energy  -ray sky NEPPSR 25 Aug Guy Blaylock U. of Massachusetts Many thanks.
On A Large Array Of Midsized Telescopes Stephen Fegan Vladimir Vassiliev UCLA.
Search of High Energy Cosmic Sources with the Plataforma Solar de Almeria: The GRAAL Experiment Fernando Arqueros Universidad Complutense de Madrid F.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Julie McEnery GLAST Science Lunch Milagro: A Wide Field of View Gamma-Ray Telescope Julie McEnery.
Thémis What’s new on the ground? Running Cherenkov gamma ray telescopes David A. Smith Centre d’Études Nucléaires de Bordeaux-Gradignan, In2p3/CNRS CAT.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Seminari IEEC - 15-XII-04Oscar Blanch Bigas Cosmology with the New Generation of Cherenkov Telescopes Oscar Blanch Bigas IFAE, UAB Seminari IEEC 15-XII-04.
High-Energy Astrophysics
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Gus Sinnis RICAP, Rome June 2007 High Altitude Water Cherenkov Telescope  Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration.
High Energy Particle Astrophysics PRC-US Collaboration Summary Report Gus Sinnis David Kieda Gus Sinnis Hu Hongbo Jordan Goodman Min Zha.
Moriond 2001Jordan GoodmanMilagro Collaboration The Milagro Gamma Ray Observatory The Physics of Milagro Milagrito –Mrk 501 –GRB a Milagro –Description.
Recent TeV Observations of Blazars & Connections to GLAST Frank Krennrich Iowa State University VERITAS Collaboration GSFC, October 24, 2002 AGN.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Air Cherenkov Methods in Cosmic Rays: A Review and Some History A.S. Lidvansky, Institute for Nuclear Research, Moscow.
1 TeVγ 線天文学の現状と将来 森 正樹 東京大学宇宙線研究所 「高エネルギー宇宙物理学の現状と将来」 2000 年 9 月 日 大阪大学.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
Development of Ideas in Ground-based Gamma-ray Astronomy, Status of Field and Scientific Expectations from HESS, VERITAS, MAGIC and CANGAROO Trevor C.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Jamie Holder University of Leeds August 2005 Status and Performance of the First VERITAS Telescope.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
CTA The next generation ultimate gamma ray observatory M. Teshima Max-Planck-Institute for Physics.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
1 Caltech Jan High Energy Gamma Astronomy Patrick Fleury (Ecole Polytechnique ) LIGO-G R.
Future directions in Ground-Based Gamma-Ray Astronomy Simon Swordy - TeV Particle Astro II, UW Madison, 2006.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
The Spectrum of Markarian 421 Above 100 GeV with STACEE
1st page of proposal with 2 pictures and institution list 1.
Introduction Data analyzed Analysis method Preliminary results
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
UPGRADE PLANS FOR VERITAS Ben Zitzer* for the VERITAS Collaboration *Argonne National Laboratory.
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
CTA-LST Large Size Telescope M. Teshima for the CTA Consortium Institute for Cosmic Ray Research, University of Tokyo Max-Planck-Institute for Physics.
TeV Gamma Ray Astrophysics Wei Cui Department of Physics Purdue University.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
Future Imaging Atmospheric Cherenkov Telescopes:
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
Alessandro de Angelis Lisboa 2003
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Calibrating Atmospheric Cherenkov Telescopes with the LAT
Instrumentation and Methods in Astroparticle Physics Physics 801
Dark Matter Limits From The Galactic Halo With H.E.S.S.
Presentation transcript:

05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,

05/02/031 Outline - Scientific objectives - Technique - Design considerations - Solar arrays - Large single imaging telescope - Arrays of imaging telescopes - Summary

05/02/031 Early 1990s [GeV] EGRET Whipple Compton, Pair conversion (Satellite) Atmospheric Cherenkov (Ground)

05/02/031 Early [GeV] EGRET Whipple, CAT, HEGRA Pair conversion (Satellite) Atmospheric Cherenkov (Ground)

05/02/ [GeV] GLAST STACEE, CELESTE MAGIC VERITAS, HESS, CANGAROO III Chandra Integral

05/02/031 Design Goals of New Atmospheric Cherenkov Telescopes - Large effective area ~ 0.1 km 2 (10 5 GLAST) - Low energy threshold ~ 10 GeV – 50 GeV - Better flux sensitivity ~ 5 mCrab (50 hours) - Energy resolution  E/E ~ 10% - 15% - Angular resolution  ~ 0.02 o – 0.1 o - Wide energy range ~ 10 GeV – 100 TeV - Large Field of View ~ 3 o – 10 o (1/80 GLAST)

05/02/031 Scientific Objectives Active Galactic Nuclei Supernova Remnants Infrared Background (Diffuse) Galactic Plane Gamma Ray Bursts Neutralino Annihilation, Primordial Black Holes, Quantum Gravity, … Pulsars   e + + e -

05/02/031 Existing telescopes Whipple * Arizona, USA 10 m Crimea Crimea, Ukraine 6 x 2.4 m 6 x SHALON Tien Shen, Russia 4 m CANGAROO Woomera, Aust. 3.8 m HEGRA * La Palma, Sp. 5 x 3 m 5 x CAT * Pyrenees, Fr. 4 m Durham/Mk6 Narrabri/Aust. 3 x 7 m 1 x TACTIC Mt. Abu, India 4 x 3.5 m 1 x Seven TA Utah, USA 7 x 2 m 2 x * Significance (1Crab) > 5  x  t/hours  1/2 Solar-2 Barstow, USA 32x 7m 32 x 1 ?? 2000 GRAAL Almeria, Spain 63 x 7m Group/ Location Reflectors Camera Threshold Epoch Instrument Number x Aperture Pixels (GeV) Beginning STACEE Sandia, New Mexico 32(64) x 7m 32(64) x 1 180(50) 1998 CELESTE Pyrenees, Fr. 40 x 7m 40 x

05/02/031 Future telescopes VERITAS MAGIC STACEE CELESTE CangarooIII HESS GRAAL

05/02/031 Imaging Atmospheric Cherenkov Telescopes Imaging Camera Area ~ 100,000 m 2 (10 5 x GLAST) E ~ 0.2 – 100 TeV  ~ 0.2 o 0.01 – 100 TeV

05/02/031  -ray images: - narrow, short, smooth Hadronic images: - broad, long - local muons, patchy hadron rejection: 99.7% (10 -3 )  -ray proton Cosmic Ray Rejection Technique Crab Nebula 7  in 1hour

05/02/031 Design: Energy Threshold - Night Sky Background : NSB = 2 – 4 x photons/sr/m 2 /s  ~ 1.3 photons/m 2 (5ns, 0.5 o aperture) - Signal from  -ray shower: S ~ 0.1 [E /GeV] photons/m 2  ~ 5 photons/m 2 (50 GeV)  Signal/Noise ~ S/NSB 1/2  E ~ A -1/2  mirrorthreshold

05/02/031 Design: Energy Threshold E ~ (NSB  A) 1/2 threshold dark site solid angle  pixel size electronics & optics QE efficiency

05/02/031 General Strategies - increase mirror area: 250 GeV  50 GeV 10m - reduce optical losses:  f/number, light concentrators, mirrors  photodetectors QE (future): 25%  50% … 80% - reduce NSB:  improve telescope resolution  reduce pixel size in IACTs: 0.25 o  0.10 o  fast electronics: 20 ns  ns 50m

05/02/031 General Strategies - increase mirror area: 250 GeV  50 GeV 10m - reduce optical losses:  f/number, light concentrators, mirrors  photodetectors QE (future): 25%  50% … 80% - reduce NSB:  improve telescope resolution  reduce pixel size in IACTs: 0.25 o  0.10 o  fast electronics: 20 ns  ns 50m

05/02/031 Solar Arrays heliostats reflect light onto secondary optics (tower) wavefront sampling (light density profile) rejection of hadrons in trigger mirror area ~ m 2 energy threshold ~ 50 GeV Significance (1Crab) ~ 1.0 – 1.6  x  t/hours  1/2

05/02/031 Solar Arrays Base Ecole Polytechnique MPI, Munich UC, Riverside UCLA Location Pyrenees, Fr. Almeria, Spain Barstow, CA Sandia, NM # of heliostats 40 (54) (48) Mirror area 2160 m m m (1800) m 2 Pixels (48) Energy threshold 50 GeV 100 GeV ? 190 GeV (50 GeV) Parameter CELESTE GRAAL Solar-1 STACEE

05/02/031 Single Large Imaging Telescope - parabolic reflector ~ 236 m 2 - focal length ~ 17 m - carbon fiber space frame - diamond-milled aluminum mirrors - swift slew speed 3 o /s pixels: ~ 0.1 o - fast electronics  5 ns trigger, FADCs - future (high QE detectors 45%) - E ~ 30 GeV MAGIC threshold - First light 2002

05/02/031 Arrays of Imaging Telescopes I - 50 GeV – 50 TeV -  ~ 0.03 ~ Flux sensitivity: m VERITAS

05/02/031 Arrays of Imaging Telescopes I - 50 GeV – 50 TeV -  ~ 0.03 ~ Flux sensitivity: m VERITAS

05/02/031 Arrays of Imaging Telescopes II Stereoscopic detection: - reduction of energy threshold - improved angular resolution  - rejection of local muons  - shower core reconstruction  - analysis of faint images

05/02/031 Arrays of Imaging Telescopes III - Science topics with NGGGRT

05/02/031 HESS - 4 x Davis-Cotton ~ 120 m 2 - focal length ~ 15 m - steel space frame - ground-glas mirrors pixels: ~ 0.16 o - distance 120 m First light 2002

05/02/031 CANGAROO III - 4 x parabola ~ 80 m 2 - focal length ~ 8 m - composite mirrors pixels - distance 100 m First light 2004

05/02/031 VERITAS - 7x Davis-Cotton ~ 100 m 2 - focal length ~ 12 m - steel structure - ground-glas mirrors pixels: ~ 0.15 o - distance 80 m MHz FADC - Sub-arrays - mirror covers First light 2003/2005?

05/02/031 VERITAS

05/02/031 Overview of Future Telescopes Parameter MAGIC HESS CANGAROO-III VERITAS Base MPI, Munich MPI, Heidelberg Tokyo, Japan SAO, Arizona Location La Palma Namibia Woomera, Australia Arizona # of telescopes 1 4(16) 4 7 Mirror area/tel. 236 m m 2 80 m m 2 Elevation 2.3 km 1.8 km S.L. 1.3 km Energy threshold 30 GeV 40 GeV 100 GeV 50 GeV # of pixels x x x 7 Sub-arrays First light /2005?

05/02/031 Point Source Sensitivity

05/02/031 Sensitivity of Telescope Arrays

05/02/031 CELESTE: Crab at 50 GeV de Naurois et al., Proceed. of Gamma Ray Astrophysics workshop, in press (Heidelberg)

05/02/031 Sensitivity to flares 5 mCrab (50 h) 20 x Whipple  second time scale for flares  Good match with X-ray satellites hypothetical lightcurve

05/02/031 Status of Projects? Very Energetic Radiation Imaging Telescope Array System (VERITAS) Astronomy & Astrophysics in the New Millenium NRC 10-year Report