A Neural-Network Approach for Visual Cryptography 虞台文 大同大學資工所.

Slides:



Advertisements
Similar presentations
Visual Cryptography Moni Naor Adi Shamir Presented By:
Advertisements

A New Cheating Prevention Scheme For Visual Cryptography 第十六屆全國資訊安全會議 Jun Du-Shiau Tsai ab,Tzung-her Chen c and Gwoboa Horng a a Department of Computer.
國立暨南國際大學 National Chi Nan University A Study of (k, n)-threshold Secret Image Sharing Schemes in Visual Cryptography without Expansion Presenter : Ying-Yu.
IEEE TRANSACTIONS ON IMAGE PROCESSING,2007 指導老師:李南逸 報告者:黃資真 Cheating Prevention in Visual Cryptography 1.
Bayesian Networks Bucket Elimination Algorithm 主講人:虞台文 大同大學資工所 智慧型多媒體研究室.
Decision Tree Learning 主講人:虞台文 大同大學資工所 智慧型多媒體研究室.
Some Results on Disk Graphs 陳哲烱 中國科技大學 ( 台灣 ) Joint work with 李國偉、林瑩貞.
主講人:虞台文 大同大學資工所 智慧型多媒體研究室
網際網路資料庫連結 2004 Php Web Programming. 上完這段課程,你將學會  一般靜態網頁與互動式網頁的區別。  網際網路上大量資料的存取。  資料庫的角色與功能。  Web Server 的角色與功能。  網際網路資料庫的應用。  基本的程式寫作技巧及網頁的應用。
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
Neural network (II) — HNN Hopfield Neural Network Date : 2002/09/24 Present by John Chen
亞歷山大文學資料庫 Alexander Street Literature User Guide 中文檢索 登入網址
Last modified 2004/02 An Introduction to SQL (Structured Query Language )
LensBar – Visualization for Browsing and Filtering Large Lists of Data Toshiyuki Masui Proceedings. IEEE Symposium on Information Visualization, 1998 元智資工所.
1 視覺密碼學 Chair Professor Chin-Chen Chang ( 張真誠 ) National Tsing Hua University ( 清華大學 ) National Chung Cheng University ( 中正大學 ) Feng Chia University (
智慧藏科技知識庫使 用說明 呂明欣 國立政治大學資訊科學系機器智能實驗室 語言教學研究中心 2006/12/5.
New Visual Secret Sharing Schemes With Non-Expansible Shadow Size Using Non-binary Sub Pixel Ching-Nung Yang Yun-Hsiang Liang Wan-Hsiang Chou National.
A Neural Network Approach for Visual Cryptography Tai-Wen Yue and Suchen Chiang IEEE 2000.
Ubiquitous News(Unews) 的設計與實作 指導教授:黃毅然 教授 學生:葉雅琳 系別:資訊工程學系.
鄭瑞興的個人簡介 中山資工所 鄭瑞興.
元智大學資訊工程學系 系統實驗室 1 以 Metalogy 的詮釋資料為依據 的跨圖書館搜尋引擎之設計 陳英祥陳哲民楊正仁 元智大學資訊工程學系2001/10/24.
Chapter 0 Computer Science (CS) 計算機概論 General Goals To give you a solid, broad understanding of how a computing system works To develop an appreciation.
1 伺服器輔助秘密運算 機置及其應用 Server-aided Secret Computation -- Schemes and Applications 洪國寶 AI Lab.
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 Optimizing Cloud MapReduce for Processing Stream Data using Pipelining 出處 : 2011 UKSim 5th European Symposium on Computer Modeling.
智慧型系統實驗室 iLab 南台資訊工程 1 Evaluation for the Test Quality of Dynamic Question Generation by Particle Swarm Optimization for Adaptive Testing Department of.
Subversion Tutorial Presenter: Ya-Lin Huang. Introduction 版本控制系統是什麼? 管理對資訊所做人為變動 程式設計師的工具之一 為何要使用版本控制系統? 促成有效率的團隊合作 使變動歷程能被追溯 2.
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A Static Hand Gesture Recognition Algorithm Using K- Mean Based Radial Basis Function Neural Network 作者 :Dipak Kumar Ghosh,
Visual Cryptography Advanced Information Security March 11, 2010 Presenter: Semin Kim.
Visual Cryptography Hossein Hajiabolhassan Department of Mathematical Sciences Shahid Beheshti University Tehran, Iran.
The Simplex Algorithm 虞台文 大同大學資工所 智慧型多媒體研究室. Content Basic Feasible Solutions The Geometry of Linear Programs Moving From Bfs to Bfs Organization of a.
Neural Networks for Visual Cryptography --- with Examples for Complex Access Schemes Tatung University, Taiwan Presenter: Tai-Wen Yue CAINE-2000.
Lecture 1: A Formal Model of Computation 虞台文 大同大學資工所 智慧型多媒體研究室.
Quantum Neural Networks Introduction & Applications 虞台文.
Intelligent Space 國立台灣大學資訊工程研究所 智慧型空間實驗室 Service Behavior Consistency in the OSGi Platform Authors Y.Qin, H.Hao,L.Jun, G.Jidong and L.Jian Proceedings.
Reinforcement Learning 主講人:虞台文 大同大學資工所 智慧型多媒體研究室.
國立雲林科技大學工業工程與管理所 Graduate school of Industrial Engineering & Management, National Yunlin University of Science & Technology 系統可靠度實驗室 System Reliability.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Extreme Visualization: Squeezing a Billion Records into a Million Pixels Presenter : Jiang-Shan Wang.
Introduction to Visual Cryptography
哼唱檢索用於嵌入式系統 張智星 多媒體資訊檢索實驗室 台灣大學 資訊工程系.
Visual Cryptography for Gray-Level Images by Dithering Techniques
Image Size Invariant Visual Cryptography for General Access Structures Subject to Display Quality Constraints 報告者 : 陳建宇.
Intelligent Space 國立台灣大學資訊工程研究所 智慧型空間實驗室 Brainstorming Principles Reporter Chun-Feng Liao Sep 12,2005 Source D.Bellin and S.S.Simone, ”Brainstorming: A.
A Scrollbar-based Visualization for Document Navigation Donald Byrd Proceedings of the 4 th ACM conference on Digital libraries, 元智資工所 系統實驗室 楊錫謦.
Ad insertion at proxies to improve cache hit rates Amit Gupta and Geoffrey baehr, Sun Microsystems Laboratories 901 San Antonio Road Palo Alto,CA
Hopfield Neural Networks for Optimization 虞台文 大同大學資工所 智慧型多媒體研究室.
Lecture 2: Limiting Models of Instruction Obeying Machine 虞台文 大同大學資工所 智慧型多媒體研究室.
VCPSS : A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches Sian-Jheng.
南台科技大學 資訊工程系 Data hiding based on the similarity between neighboring pixels with reversibility Author:Y.-C. Li, C.-M. Yeh, C.-C. Chang. Date:
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A new social and momentum component adaptive PSO algorithm for image segmentation Expert Systems with Applications 38 (2011)
Byzantine Agreement in the Presence of Mixed Faults on Processor and Links Hin-Sing Siu, Yeh-Hao Chin, Wei-Pang Yang Senior Member, IEEE Computer Society,
Authors: Tzung-Her Chen, Kai-Hsiang Tsao, and Kuo-Chen Wei Source: Proceedings of The 8th International Conference on Intelligent System Design and Applications.
A New Approach for Visual Cryptography Wen-Guey Tzeng and Chi-Ming Hu Designs, codes and cryptography, 27, ,2002 Reporter: 李惠龍.
Linear Programming 虞台文.
 劉庭瑋 Electronic Medical Report Security Using Visual Secret Sharing Scheme.
EM Algorithm 主講人:虞台文 大同大學資工所 智慧型多媒體研究室. Contents Introduction Example  Missing Data Example  Mixed Attributes Example  Mixture Main Body Mixture Model.
Lecture 6: Context-Free Languages
Visual Cryptography Given By: Moni Naor Adi Shamir Presented By: Anil Vishnoi (2005H103017)
義守大學資訊工程學系 作者:郭東黌, 張佑康 報告人:徐碩利 Date: 2006/11/01
Visual Secret Sharing Chair Professor Chin-Chen Chang (張真誠)
The Recent Developments in Visual Cryptography
The Recent Developments in Visual Secret Sharing
基於邊緣吻合向量量化編碼 法之資訊隱藏 張 真 誠 逢甲大學 講座教授 中正大學 榮譽教授、合聘教授 清華大學 合聘教授
The New Developments in Visual Cryptography
Hopfield Neural Networks for Optimization
Steganography in halftone images: conjugate error diffusion
Hiding Multiple Watermarks in Transparencies of Visual Cryptography
A Neural-Network Approach for Visual Cryptography
Simulated Annealing & Boltzmann Machines
Edit Distance 張智星 (Roger Jang)
Presentation transcript:

A Neural-Network Approach for Visual Cryptography 虞台文 大同大學資工所

Content Overview The Q’tron NN Model The Q’tron NN Approach for – Visual Cryptography – Visual Authorization – Semipublic Encryption General Access Scheme Conclusion

A Neural-Network Approach for Visual Cryptography Overview 大同大學資工所

What is Visual Cryptography and Authorization? Visual Cryptography (VC) – Encrypts secrete into a set of images (shares). – Decrypts secrete using eyes. Visual Authorization (VA) – An application of visual cryptography. – Assign different access rights to users. – Authorizing using eyes.

What is Semipublic Encryption? Visual Cryptography (VC) – Encrypts secrete into a set of images (shares). – Decrypts secrete using eyes. Semipublic Encryption (SE) – An application of visual cryptography. – Hide only secret parts in documents – Right information is available if and only if a right key is provided

The Basic Concept of VC Target Image (The Secret) Share 2 Share 1 Access Scheme Access Scheme The (2, 2) access scheme.

The Shares Produced by NN Target Image (The Secret) Share 2 Share 1 Neural Network Neural Network We get shares after the NN settles down.

Decrypting Using Eyes Share 2 Share 1

Example: (2, 2) Target image Share image2 Share image1 Plane shares are used

Traditional Approach Naor and Shamir (2,2) PixelProbability Shares #1 #2 Superposition of the two shares White Pixels Black Pixels The Code Book

The VA Scheme key share user shares (resource 2) user shares (resource 1) stacking … … VIP IP P … VIP IP P V ery I mportant P erson. …

The SE Scheme 智慧型系統實驗室資料庫 使用者 Key 江素貞 AB 陳美靜 CD 張循鋰 XY 李作中 UV 智慧型系統實驗室資料庫 使用者 Key 江素貞 AB 陳美靜 CD 張循鋰 XY 李作中 UV

public share (database in lab) ABCDXYUV stacking user shares keys 素貞 The SE Scheme 循鋰美靜作中

A Neural-Network Approach for Visual Cryptography The Q’tron NN Model 大同大學資工所

The Q’tron  i (a i )  i (a i ) qi1qi1 aiQiaiQi Active value Q i  {0, 1, …, q i  1} IiRIiR External Stimulus Internal Stimulus NiNi Noise Quantum Neuron

The Q’tron  i (a i )  i (a i ) qi1qi1 aiQiaiQi Active value Q i  {0, 1, …, q i  1} IiRIiR External Stimulus Internal Stimulus NiNi Noise Free-Mode Q’tron

The Q’tron  i (a i )  i (a i ) qi1qi1 aiQiaiQi Active value Q i  {0, 1, …, q i  1} IiRIiR External Stimulus Internal Stimulus NiNi Noise Clamp-Mode Q’tron

Input Stimulus Internal Stimulus ExternalStimulus Noise Free Term  i (a i )  i (a i )... Noise

Level Transition Running Asynchronously  i (a i )  i (a i )...

Energy Function Interaction Among Q’trons Interaction with External Stimuli Constant Monotonically Nonincreasing

The Q’tron NN

Interface/Hidden Q’trons clamp-mode free-mode free mode  Hidden Q’trons Interface Q’trons

Question-Answering Feed a question by clamping some interface Q’trons. clamp-mode free-mode free mode  Hidden Q’trons Interface Q’trons

Question-Answering Read answer when all interface Q’trons settle down. clamp-mode free-mode free mode  Hidden Q’trons Interface Q’trons

A Neural-Network Approach for Visual Cryptography The Q’tron NNs for Visual Cryptography Visual Authorization Semipublic Encryption 大同大學資工所

Energy Function for VC Visual Cryptography Image Halftoning Image Stacking +

Image Halftoning Graytone Image Halftoning Halftone Image 0 (Transparent) 1 Graytone image  halftone image can be formulated as to minimize the energy function of a Q’tron NN.

Image Halftoning Graytone Image Halftoning Halftone Image 0 (Transparent) 1 Graytone image  halftone image can be formulated as to minimize the energy function of a Q’tron NN. In ideal case, each pair of corresponding small areas has the `same’ average graylevel.

The Q’tron NN for Image Halftoning Plane- G (Graytone image) Plane- H (Halftone image)

Image Halftoning Halftoning Clamp-mode Free-mode Plane- G (Graytone image) Plane- H (Halftone image) Question Answer

Image Restoration Plane- G (Graytone image) Plane- H (Halftone image) Restoration Clamp-mode Free-mode Question Answer

Stacking Rule ++++ The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Q’tron NN.

Stacking Rule ++++ The satisfaction of stacking rule can also be formulated as to minimize the energy function of a Q’tron NN. The energy function for the stacking rule. See the paper for the detail.

The Total Energy + Share 1 Target Share 1 Share 2 TargetShare 2 Total Energy Image Halftoning Stacking Rule

The Q’tron NN for VC/VA Plane-GS1 Plane-HS1 Share 1 Plane-HS2 Plane-GS2 Share 2 Plane-GT Plane-HT Target

Application  Visual Cryptography Plane-GS1 Plane-HS1 Share 1 Plane-HS2 Plane-GS2 Share 2 Plane-GT Plane-HT Target Clamp-Mode Free-Mode

Application  Visual Authorization Plane-GS1 Plane-HS1 User Share Authority Plane-HS2 Plane-GS2 Plane-GT Plane-HT Key Share User Share VIPIPP

Application  Visual Authorization Plane-GS1 Plane-HS1 User Share Authority Clamp-Mode Free-Mode Plane-HS2 Plane-GS2 Clamp-Mode Free-Mode Plane-GT Plane-HT Clamp-Mode Free-Mode Key Share User Share VIPIPP Producing key Share & the first user share.

Application  Visual Authorization Plane-GS1 Plane-HS1 User Share Authority Clamp-Mode Plane-HS2 Plane-GS2 Clamp-Mode Free-Mode Plane-GT Plane-HT Clamp-Mode Some are clamped and some are free. Key Share User Share VIPIPP Producing other user shares.

Application  Visual Authorization Plane-GS1 Plane-HS1 User Share Authority Clamp-Mode Plane-HS2 Plane-GS2 Clamp-Mode Free-Mode Plane-GT Plane-HT Clamp-Mode Some are clamped and some are free. Key Share User Share VIPIPP Producing other user shares.

Application  Visual Authorization Plane-GS1 Plane-HS1 User Share Authority Clamp-Mode Plane-HS2 Plane-GS2 Clamp-Mode Free-Mode Plane-GT Plane-HT Clamp-Mode Some are clamped and some are free. Key Share User Share VIPIPP

Key Share User Share VIP IP P

A Neural-Network Approach for Visual Cryptography General Access Scheme 大同大學資工所

Full Access Scheme  3 Shares 朝辭白帝彩雲間 朝 辭 白 帝彩雲 間 Shares

Full Access Scheme  3 Shares 朝辭白帝彩雲間 朝 辭 白 帝彩雲 間 Shares Theoretically, unrealizable. We did it in practical sense. Theoretically, unrealizable. We did it in practical sense.

Full Access Scheme  3 Shares S1S2S3 S1+S2S1+S3S2+S3S1+S2+S3

Access Scheme with Forbidden Subset(s) Anyone knows what is it?

Access Scheme with Forbidden Subset(s) 人之初性本善 人 之 初 性本 X 善 Theoretically, realizable. Shares

Access Scheme with Forbidden Subset(s) S1S2S3 S1+S2S1+S3S2+S3S1+S2+S3

A Neural-Network Approach for Visual Cryptography Conclusion 大同大學資工所

Conclusion Different from traditional approaches: – No codebook needed. – Operating on gray images directly. Complex access scheme capable.

謝謝