ECE 2799 Electrical and Computer Engineering Design ANALOG to DIGITAL CONVERSION Prof. Bitar Last Update:
ADC Symbol (Parallel Output) S. J. Bitar ADC N Bits D0D0 DNDN A IN
Important ADC Parameters Resolution Resolution Accuracy Accuracy Conversion Time Conversion Time S. J. Bitar
ADC Resolution Number of Bits Number of Bits Example: N=8 Bits Example: N=8 Bits Number of Discrete Levels Number of Discrete Levels 2 N = 2 8 = N = 2 8 = 256 Voltage per Step Voltage per Step ΔV = V FullScaleRange / 2 N ΔV = V FullScaleRange / 2 N = 5V / 256 = 5V / 256 = mV = mV S. J. Bitar
Conversion Table (for ΔV = 1LSB = 5V / 256 = mV ) S. J. Bitar Dec.HexBinaryV (mV) V. 255FF V Q: How would you digitize 20mV?
Voltage to Binary Transfer Characteristic S. J. Bitar Courtesy: Analog Devices AD7819 Datasheet
Accuracy: Quantization Error Quantization Error is often equal to ½ the Least-Significant-Bit voltage. Quantization Error is often equal to ½ the Least-Significant-Bit voltage. In our example, that would be, In our example, that would be, mV / 2 = 9.766mV mV / 2 = 9.766mV As a percentage of V FSR, that would be, As a percentage of V FSR, that would be, 9.766mV / x 100 = 0.195% 9.766mV / x 100 = 0.195% S. J. Bitar
Conversion Time The time required for the ADC to convert a stable analog input voltage to a binary number. (Implies the use of a S/H circuit.) The time required for the ADC to convert a stable analog input voltage to a binary number. (Implies the use of a S/H circuit.) Depends greatly on the architecture of the ADC. There are different types. Depends greatly on the architecture of the ADC. There are different types. SAR (Successive Approximation Register) SAR (Successive Approximation Register) Sigma-Delta Sigma-Delta Flash Flash S. J. Bitar
How do You Choose ? Well, how often do you need to sample your analog waveform, if you want to reproduce it accurately? Well, how often do you need to sample your analog waveform, if you want to reproduce it accurately? Nyquist Rate (minimum) Nyquist Rate (minimum) For audio, typically 44.1 kSPS is used. For audio, typically 44.1 kSPS is used. That’s 22.67µsec per sample, so the conversion time has to be faster than that! That’s 22.67µsec per sample, so the conversion time has to be faster than that! S. J. Bitar
A Look at Two ADC’s Analog Devices AD7819 Analog Devices AD7819 Texas Instruments MSP430xx series microcontrollers with built-in ADC’s Texas Instruments MSP430xx series microcontrollers with built-in ADC’s S. J. Bitar
AD Bit Parallel DAC S. J. Bitar
AD7819 Block Diagram S. J. Bitar
AD7819 Pin Descriptions S. J. Bitar
Package Pin Assignments S. J. Bitar
AD7819 Converter Operation S. J. Bitar
AD7819 Typical Circuit S. J. Bitar
AD7819 Equivalent Analog Input Model S. J. Bitar
AD7819 DC Acquisition Time S. J. Bitar
AD7819 Transfer Characteristic S. J. Bitar
AD7819 Microcontroller Interfacing S. J. Bitar
AD7819 Timing and Control S. J. Bitar
MSP430xx ADC Features Maximum conversion rate 200 ksps Maximum conversion rate 200 ksps Monotonic 10-bit converter Monotonic 10-bit converter Internal sample-and-hold Internal sample-and-hold Timer control option Timer control option Optional on-chip reference (1.5 V or 2.5 V) Optional on-chip reference (1.5 V or 2.5 V) Up to 12 inputs (depends on chip) Up to 12 inputs (depends on chip) Internal temp reference Internal temp reference Selectable clock source Selectable clock source Multiple conversion modes Multiple conversion modes Auto-conversion storage / data transfer modes Auto-conversion storage / data transfer modes S. J. Bitar
Conversion Formula S. J. Bitar
Analog Multiplexer S. J. Bitar
Sample Timing S. J. Bitar
Analog Input Model S. J. Bitar
Conversion Mode Summary S. J. Bitar
Conversion State Diagram S. J. Bitar
Transferring Data to Memory S. J. Bitar
Interrupt Driven Conversion S. J. Bitar
ADC Registers S. J. Bitar
Example: Control Register 1 S. J. Bitar
Example: Input Channel Select S. J. Bitar