Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.

Slides:



Advertisements
Similar presentations
The role of the isovector monopole state in Coulomb mixing. N.Auerbach TAU and MSU.
Advertisements

A brief introduction D S Judson. Kinetic Energy Interactions between of nucleons i th and j th nucleons The wavefunction of a nucleus composed of A nucleons.
Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
Shell model studies along the N~126 line Zsolt Podolyák.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Mean-field calculation based on proton-neutron mixed energy density functionals Koichi Sato (RIKEN Nishina Center) Collaborators: Jacek Dobaczewski (Univ.
Emission of Scission Neutrons: Testing the Sudden Approximation N. Carjan Centre d'Etudes Nucléaires de Bordeaux-Gradignan,CNRS/IN2P3 – Université Bordeaux.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Shell Model with residual interactions – mostly 2-particle systems Simple forces, simple physical interpretation.
Single Particle Energies
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Completeness of the Coulomb eigenfunctions Myles Akin Cyclotron Institute, Texas A&M University, College Station, Texas University of Georgia, Athens,
Spectroscopic factors and Asymptotic Normalization Coefficients from the Source Term Approach and from (d,p) reactions N.K. Timofeyuk University of Surrey.
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 6,7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Charge radii of 6,8 He and Halo nuclei in Gamow Shell Model G.Papadimitriou 1 N.Michel 7, W.Nazarewicz 1,2,4, M.Ploszajczak 5, J.Rotureau 8 1 Department.
Charge Symmetry Breaking/Isospin Nonconservation Willem T.H. van Oers ECTJune 13-17, 2005.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Coupling between the lattice and internal nuclear degrees of freedom Peter Hagelstein 1 and Irfan Chaudhary 2 1 Massachusetts Institute of Technology 2.
Petra Zdanska, IOCB June 2004 – Feb 2006 Resonances and background scattering in gedanken experiment with varying projectile flux.
Nuclear deformation in deep inelastic collisions of U + U.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Variational multiparticle-multihole configuration mixing approach
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Shell Model with residual interactions – mostly 2-particle systems Simple forces, simple physical interpretation Lecture 2.
What is a resonance? K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (1)
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Shell structure: ~ 1 MeV Quantum phase transitions: ~ 100s keV Collective effects: ~ 100s keV Interaction filters: ~ keV Binding energies, Separation.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
N. Schunck(1,2,3) and J. L. Egido(3)
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Adiabatic hyperspherical study of triatomic helium systems
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Complex-energy shell model description of light nuclei
This relation has been checked in numerous precision experiments.
Two-body force in three-body system: a case of (d,p) reactions
The role of isospin symmetry in medium-mass N ~ Z nuclei
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Open quantum systems.
Ch. Elster, L. Hlophe TORUS collaboration Supported by: U.S. DOE
Hiroshi MASUI Kitami Institute of Technology
Coulomb repulsion and Slater Integrals
Structure of 10Be and 10B hypernuclei studied with four-body cluster model Λ Λ E. Hiyama (RIKEN) Submitted in PRC last August and waiting for referee’s.
Cluster and Density wave --- cluster structures in 28Si and 12C---
Di-nucleon correlations and soft dipole excitations in exotic nuclei
R. Lazauskas Application of the complex-scaling
Institute of Modern Physics Chinese Academy of Sciences
Nicolas Michel (ESNT/SPhN/CEA) Kenichi Matsuyanagi (Kyoto University)
Presentation transcript:

Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of Jyväskylä) Marek Ploszajczak (GANIL) Witek Nazarewicz (ORNL – University of Tennessee)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 2 Plan Experimental motivation Experimental motivation Berggren completeness relation and Gamow Shell Model Berggren completeness relation and Gamow Shell Model Cluster orbital shell model and Hamiltonian definition Cluster orbital shell model and Hamiltonian definition Spectroscopic factor definition Spectroscopic factor definition Treatment of Coulomb interaction and recoil term Treatment of Coulomb interaction and recoil term Isospin symmetry breaking in 6 He, 6 Be and 6 Li Isospin symmetry breaking in 6 He, 6 Be and 6 Li Spectroscopic factors, energies, T +/- and T 2 expectation values Spectroscopic factors, energies, T +/- and T 2 expectation values Conclusion Conclusion

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 3 Halos, resonant states

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 4

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 5 Gamow states Georg Gamow : simple model for  decay Georg Gamow : simple model for  decay G.A. Gamow, Zs f. Phys. 51 (1928) 204; 52 (1928) 510 G.A. Gamow, Zs f. Phys. 51 (1928) 204; 52 (1928) 510 Definition : Definition :

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 6 Complex scaling Calculation of radial integrals: exterior complex scaling Calculation of radial integrals: exterior complex scaling Analytic continuation : integral independent of R and θ Analytic continuation : integral independent of R and θ

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 7 Complex energy states bound states broad resonances narrow resonances L + : arbitrary contour antibound states capturing states Im(k) Re(k) Berggren completeness relation

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 8 Completeness relation with Gamow states Berggren completeness relation (l,j) : Berggren completeness relation (l,j) : T. Berggren, Nucl. Phys. A 109, (1967) 205 (neutrons only) T. Berggren, Nucl. Phys. A 109, (1967) 205 (neutrons only) Extended to proton case (N. Michel, J. Math. Phys., 49, (2008)) Extended to proton case (N. Michel, J. Math. Phys., 49, (2008)) Continuum discretization: Continuum discretization: N-body completeness relation: N-body completeness relation:

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 9 Cluster orbital shell model Shell model : 3A degrees of freedom (particles coordinates) Shell model : 3A degrees of freedom (particles coordinates) 3(A-1) physically (translational invariance) → spurious states 3(A-1) physically (translational invariance) → spurious states Lawson method (standard shell model) : Lawson method (standard shell model) : Nħω spaces only : unavailable for Berggren bases Nħω spaces only : unavailable for Berggren bases Solution : cluster orbital shell model, core coordinates. Solution : cluster orbital shell model, core coordinates. Relative coordinates: no center of mass excitation Relative coordinates: no center of mass excitation

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 6 He, 6 Be, 6 Li: valence particles, 4 He core : 6 He, 6 Be, 6 Li: valence particles, 4 He core : H = T 1b + WS( 5 Li/ 5 He) + MSGI + V c + T rec H = T 1b + WS( 5 Li/ 5 He) + MSGI + V c + T rec 0p 3/2 (resonant), contours of s 1/2, p 3/2, p 1/2, d 5/2, d 3/2 scattering states, recoil included 0p 3/2 (resonant), contours of s 1/2, p 3/2, p 1/2, d 5/2, d 3/2 scattering states, recoil included MSGI : Modified Surface Gaussian Interaction: MSGI : Modified Surface Gaussian Interaction: 6 Be: Coulomb interaction necessary 6 Be: Coulomb interaction necessary Problem: long-range, lengthy 2D complex scaling, divergences Problem: long-range, lengthy 2D complex scaling, divergences Solution: one-body long-range / two-body short-range separation Solution: one-body long-range / two-body short-range separation H 1b one-body basis: H 1b one-body basis: 10 Hamiltonian definition

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 11 Spectroscopic factors in GSM One particle emission channel: (l,j,  ) One particle emission channel: (l,j,  ) Basis-independent definition: Basis-independent definition: Experimental : all energies taken into account Experimental : all energies taken into account Standard : representation dependence (n,l,j,  ) Standard : representation dependence (n,l,j,  ) 5 He / 6 He, 5 Li / 6 Be, 5 He / 6 Li, 5 Li / 6 Li 5 He / 6 He, 5 Li / 6 Be, 5 He / 6 Li, 5 Li / 6 Li non resonant components necessary. non resonant components necessary.

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 12 Coulomb interaction and recoil term Harmonic oscillator expansion Physical precision of the order of 1 keV Sufficient for practical applications N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 13 6 Be/ 5 Li – 6 He/ 5 He 6 Li/ 5 He – 6 Li/ 5 Li Cusps (ν) π asymptotic ≠ ν asymptotic π asymptotic ≠ ν asymptotic N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010) Cusps (π)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 14 Spectroscopic factors distribution Re[S 2 ] > 1, Im[S 2 ] ≠ 0 Large occupation of non-resonant continuum Large occupation of non-resonant continuum N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT state 6 He 6 Be (V1) 6 Be (V2) 6 Li (V1) 6 Li (V2) E calc (MeV) E exp (MeV) Γ calc (keV) · ·10 -3 Γ exp (keV) ·10 -3 S 2 (π)————1.015-i i i i0.300 S 2 (ν)0.87-i0.383————— i i state 6 He 6 Be (V1) 6 Be (V2) 6 Li (V1) 6 Li (V2) E calc (MeV) E exp (MeV) Γ calc (keV) Γ exp (keV) S 2 (π)—————0.973-i i i i0.003 S 2 (ν)1.061+i0.001————— i i0.022 Observables of 0 +, 2 + (T=1) states V1 : WS nucl (π) = WS nucl (ν) V2 : WS(π) fitted to 6 Be binding energy N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 16 (C k ) 2 6 He 6 He (rig. core) 6 Be (V1) 6 Be (V2) 6 Li (V1) 6 Li (V2) (0p 3/2 ) i i i i i i0.614 S1(πp 3/2) ————— i i i i0.244 S1(νp 3/2) i i0.668————— i i0.314 S2(s 1/2 ) i i i i i i0.0 S2(p 1/2 ) i i i i i i0.0 S2(p 3/2 ) i i i i i i0.055 S2(d 3/2 ) i i i i i0.0 S2(d 5/2 ) i i i i i0.0 Configuration mixing of 0 + (T=1) states V1 and V2 fits, recoil : slight change of basis states occupation Redistribution of basis states occupation from Coulomb Hamiltonian N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT Isospin operators: Isospin operators: Same basis demanded for protons and neutrons Same basis demanded for protons and neutrons Coulomb infinite-range part in 1/r to diagonalize Coulomb infinite-range part in 1/r to diagonalize 1/r matrix representation with Berggren basis 1/r matrix representation with Berggren basis Infinities appear on the diagonal with scattering states : Infinities appear on the diagonal with scattering states : Possible treatments: Possible treatments: Cut after r >R : no infinities but very crude Cut after r >R : no infinities but very crude Analytical subtraction of integrable singularities : Analytical subtraction of integrable singularities : Off-diagonal method : replacement of diverging by Off-diagonal method : replacement of diverging by 17 Isospin operators expectation values N. Michel, Phys. Rev. C, 83 (2011)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 18 1/r treatment precision Cut method Off-diagonal method method Subtractionmethod Numerical precision obtained with off-diagonal method N. Michel, Phys. Rev. C, 83 (2011)

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 19 6 Li(V1) 6 Be(V1) ‹ 0+ | 0+ IAS › i0.050 T av Application to 0 + (T=1) states 0 + of 6 Li almost isospin invariant 0 + of 6 Be shows large isospin asymmetry 6 Be : two valence protons → T=1 exactly Partial dynamical symmetry N.Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C, 82 (2010) IAS:Isobaricanalogstate

April 26-29, 2011 Nicolas Michel CEA / IRFU / SPhN / ESNT 20 Conclusion GSM: Exact calculations with valence protons and neutrons GSM: Exact calculations with valence protons and neutrons Recoil exactly taken into account with COSM formalism Recoil exactly taken into account with COSM formalism Coulomb interaction: exact asymptotic via Z = Z val potential introduction Coulomb interaction: exact asymptotic via Z = Z val potential introduction Theoretical and numerical errors of the model controlled Theoretical and numerical errors of the model controlled Isospin asymmetry: Proton and neutron spectroscopic factors Isospin asymmetry: Proton and neutron spectroscopic factors 0 + and 2 + T=1 triplets of 6 He, 6 Li and 6 Be 0 + and 2 + T=1 triplets of 6 He, 6 Li and 6 Be Same separation energies for all A=6 systems Same separation energies for all A=6 systems Differences from Coulomb Hamiltonian only: continuum coupling Differences from Coulomb Hamiltonian only: continuum coupling Spectroscopic factors : neutron with cusps, proton without cusps Spectroscopic factors : neutron with cusps, proton without cusps Different configuration mixings for isobaric analog states Different configuration mixings for isobaric analog states T 2 and T - expectation values : partial dynamical symmetry T 2 and T - expectation values : partial dynamical symmetry Origin : Coulomb+continuum, no charge-dependent effective forces Origin : Coulomb+continuum, no charge-dependent effective forces