1 Where do we find SNO in April? Hamish Robertson Kubodera Festschrift April, 2004.

Slides:



Advertisements
Similar presentations
Solar Neutrino Physics from SNO Aksel Hallin SNOLAB Opening May 14, 2012.
Advertisements

Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
Neutrino oscillations/mixing
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Results and Future Challenges of the Sudbury Neutrino Observatory Neil McCauley University of Pennsylvania WIN 2005 : Delphi, Greece. 7 th June 2005.
Evidence of Neutrino Oscillation from SNO Chun Shing Jason Pun Department of Physics The University of Hong Kong Presented at the HKU Neutrino Workshop.
From Nuclei to Neutrinos The Naming of the Denys Wilkinson Building 21 June 2002 Nick Jelley.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
SNOLAB Workshop V, Sudbury, August 2006 C.J. Virtue HALO - a Helium and Lead Observatory Outline Overview Motivation / Physics SNEWS Signal and Backgrounds.
Queen’s University, Kingston, ON, Canada
SNOLAB Workshop IV, Sudbury, August 2005 C.J. Virtue HALO - a Helium and Lead Observatory Outline Overview Motivation / Physics SNEWS Signal and.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Results and Prospects for SNO
手 手 羅 S N O 手 持 火 炬 的 火 炬 的 火 炬 的 手 手 手 俄 羅 羅 R E L O A D E D 手 持 火 炬 的 Results fromthe Salt Phase of the SNO Experiment Results from the Salt Phase of.
Status of the Sudbury Neutrino Observatory (SNO) Alan Poon for the SNO Collaboration Institute for Nuclear and Particle Astrophysics Lawrence Berkeley.
NDM03, June Mark Boulay for SNO Mark Boulay For the SNO Collaboration Los Alamos National Laboratory, Los Alamos NM, 87544, USA Present Status and.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Welcome to SNOLAB And to the Neutrino Geoscience Conference Art McDonald Queen’s University, Kingston Director, SNO Institute (+)
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
Results (and Expectations) from SNO, the Sudbury Neutrino Observatory Richard L. Hahn PRC-US Workshop Beijing, June 2006 * Research sponsored by the Office.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
SNO II: Salt Strikes Back Joseph A. Formaggio University of Washington NuFACT’03 Update from the Sudbury Neutrino Observatory.
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
P. Wittich 1 Peter Wittich University of PA March 1, 2002 From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
Neutrino Physics from SNO Aksel Hallin University of Alberta Erice, 2009.
Neutrino Reactions on the Deuteron in Core-Collapse Supernovae Satoshi Nakamura Osaka University Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi.
The Sudbury Neutrino Observatory First Results and Implications Nick Jelley (University of Oxford) for the SNO Collaboration October 18th, 2001 CERN.
Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory Results from the Sudbury Neutrino Observatory Karsten M. Heeger For the SNO Collaboration.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
Monday, Feb. 24, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #11 Monday, Feb. 24, 2003 Dr. Jae Yu 1.Brief Review of sin 2  W measurement 2.Neutrino.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
SNO Liquid Scintillator Project NOW September 2004 Mark Chen Queen’s University & The Canadian Institute for Advanced Research.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Measuring the Neutral Current Event Rate in SNO Using 3 He(n,p)t All Neutron Backgrounds (Estimates) Photodisintegration Background U in D 2 O(20.0 fg/g)160.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
The Sudbury Neutrino Observatory. Neil McCauley University of Pennsylvania NuFact th July 2004.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Search for Sterile Neutrino Oscillations with MiniBooNE
J. Dunmore, University of Oxford NDM03, 10 June 2003 Event Isotropy in the Salt Phase of SNO Jessica Dunmore University of Oxford NDM03, Nara - 10 June.
Solar Neutrino Observations at the Sudbury Neutrino Observatory (SNO) Alan Poon † Institute for Nuclear and Particle Astrophysics Lawrence Berkeley National.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
SNO Review & Comparisons NOW September 2004 Mark Chen Queen’s University & The Canadian Institute for Advanced Research.
Solar Neutrino Results from SNO
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
SNO + SNO+ Steve Biller, Oxford University.  total SSM June 2001 (indirect) April 2002 (direct) (unconstrained CC spectrum) Sept 2003 (salt - unconstrained)
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
First Results from Phase II of the Sudbury Neutrino Observatory Joshua R. Klein University of Texas at Austin  Solar Neutrinos  Review of Phase I Solar.
MuD project: m + d  n + n + n
Sudbury Neutrino Observatory
Davide Franco for the Borexino Collaboration Milano University & INFN
Some Nuclear Physics with Solar Neutrinos
Presentation transcript:

1 Where do we find SNO in April? Hamish Robertson Kubodera Festschrift April, 2004

2 Sudbury Neutrino Observatory 1700 tonnes Inner Shielding H 2 O 1000 tonnes D 2 O 5300 tonnes Outer Shield H 2 O 12 m Diameter Acrylic Vessel Support Structure for 9500 PMTs, 60% coverage Urylon Liner and Radon Seal

3 Heavy Water from Bruce Plant

4 Reactions in SNO NC xx    npd ES --    e e xx -Low Statistics -Mainly sensitive to e,, some -sensitivity to  and  -Strong direction sensitivity -Gives e energy spectrum well -Weak direction sensitivity  1-1/3cos(  ) - e only. -Measure total 8 B flux from the sun. - Equal cross section for all types CC - epd  e p

5 Neutrino-deuteron interactions Effective Field Theory EFT (pionless) Standard Nuclear Physics Approach (SNPA): Potential model Higher-order corrections with mesons,  ’s Precision numerical calculation Expansion of interactions in power series. Scattering length a, deuteron binding , momentum p are all small compared to pion mass  (lowest non-nucleonic excitation) K. Kubodera: NSGK, PRC63, (2001) NSA+, NP A707, 561 (2002) Butler, Chen, Kong: BCK, PRC 63, (2001)

6 EFT gives general results Leading order & NLO cross sections model-independent Cross sections are analytic expressions All observable parameters (doubly differential cross sections, angular distributions, neutrino and antineutrino, CC & NC) First undetermined term is in NNLO. Term is the weak axial two-body current, called L 1,A Depend on L 1A

7 L1A can be fit to SNPA calculations A SINGLE choice of L 1A produces this agreement! EFT SNPA

8 EFT compared to Standard Nuclear Physics Approach Ratio of Butler et al. (BCK) EFT with L 1A = 4.0 fm 3 to Nakamura et al. (NSA+) CC NC MeV EFT/SNPA

9 Neutrino Flavor Composition of 8 B Flux Fluxes (10 6 cm -2 s -1 ) e : 1.76(11)  : 3.41(66) total : 5.09(64) SSM : 5.05 PRL 89, , 2002 Shape-constrained fits. Pure D 2 O data. BP04: 5.79 (1  0.23)

10 L 1A = 4.0 L 1A = 20 ES

11 ProcessL 1A (fm 3 )Reference CC, NC, ES 4.0  6.3 Chen et al., PRC 67, (2003), nucl-th/ Reactor antineutrinos 3.6  4.6 Butler et al. nucl- th/ Tritium  decay 4.2  0.1 Schiavilla et al. PRC 58, 1263 (1998); Park et al. nucl-th/ & nucl-th/ ; Ando et al. nucl- th/ Solar pp reaction 4.8  5.9 Brown et al. nucl- th/ Potential model 4.0Nakamura et al. NP A707, 561 (2002) Determinations of L 1A

12 Total spectrum (NC + CC + ES)

13 Less than Maximal Mixing at 3  Best Fit  m 2 = 6.2 x eV 2 tan 2  = 0.40 Flux/SSM =  Bounds  m 2 < 3.3 x tan 2  < 0.80 tan 2  m 1 SOLAR LMA de Holanda and Smirnov hep-ph/

14 tan 2  12 -  m 12 2 Solar OnlySolar+KL rateSolar+KL spect. de Holanda & Smirnov, hep-ph/ , hep-ph/

15 Advantages of NaCl for Neutron Detection Higher capture cross section Higher energy release Many gammas n 36 Cl * 35 Cl 36 Cl  3H3H 2 H+n 35 Cl+n 6.0 MeV 8.6 MeV  = b  = 44 b

16 Neutron Capture Efficiency in SNO 35 Cl(n,  ) 36 Cl Average Eff. = T e ≥ 5.5 MeV and R  ≤ 550 cm 2 H(n,  ) 3 H Average Eff. = T e ≥ 5.0 MeV and R  ≤ 550 cm Radial Position of 252 Cf Source, cm

17 Cherenkov light and  14 ) 43 o Charged particle, v > c/n Hollow cone of emitted photons Energy & Direction  ij      

18 Use of  14 to distinguish neutrons and e -

19 Addition of Mott scattering to EGS4 Angular Distribution of 5 MeV electrons after passing through ~1 mm of water

20 Blind Analysis Three blindfolds for the analysts: Include unknown fraction of neutrons that follow muons Spoil the NC cross section in MC Veto an unknown fraction of candidate events

21  14 Distributions for SNO Salt Data Data from July 26, 2001 to Oct. 10, live days 3055 candidate events: CC NC ES

22 Sun-angle distributions Toward sun Away from sun

23 Energy spectra Electron kinetic energy

Radioassay Bottom of vessel 2/3 way up Top of vessel MnOx HTiO MnOx HTiO

25 Salt Phase: “Box” Opened Aug. 13, 2003 Shape of 8 B spectrum in CC and ES not constrained: Standard (Ortiz et al.) shape of 8 B spectrum in CC and ES: Pure D2O Phase Salt Phase

26 tan 2  12 -  m 12 2 before Salt Phase Solar OnlySolar+KL rateSolar+KL spect. de Holanda & Smirnov, hep-ph/ , hep-ph/

27 From the Salt Phase… Ratio:

28 Closing in on  m 2,  --90% --95% --99% % LMA I only at > 99% CL

29 Results from SNO -- Salt Phase Oscillation Parameters, 2-D joint 1-  boundary Marginalized 1-D 1-  errors LMA II rejected at >99% CL Maximal mixing rejected at 5.4  A paper plus a “companion” guide can be found at sno.phy.queensu.ca Accepted (at last!) by PRL; nucl-ex/

30 Mass (eV) =0 Neutrino Masses and Flavor Content 3 e mu tau Atmospheric 2 1 Solar Atmospheric 2 1 Solar = ??

31  neutrino masses: < m 1 +m 2 +m 3 < 6.6 eV  Laboratory limit on fraction of universe closure density: Large-scale structure limit : Cosmological Implications Atmospheric neutrinos:  m 23 2  2.0  eV 2  One neutrino mass > 0.04 eV SNO + KamLAND:  m 12 2  7.1 x eV 2  One neutrino mass > eV Limits on “ e mass” give: m( 1,2,3 ) < 2.2 eV <  < 0.13  < 0.02

32 B. Cabrera, 2004

33 Physics Motivation Improved NC, NC/CC:  12 CC spectral shape: MSW,  m 2 Detection Principle 2 H + x  p + n + x MeV (NC) 3 He + n  p + 3 H MeV Event-by-event separation.. Different systematic uncertainties than neutron capture on NaCl. Measure neutrons separately: CC shape x n 40 Strings on 1-m grid 398 m total active length NCD PMT SNO Phase III (NCD Phase)- Begins ‘04  3 He Proportional Counters (“NC Detectors”)

34 Why Event-by-Event? Analyst: A. Hime

Breaking the Correlation J. Manor, M. Smith

39 Weld and Leak Check System Two NCD segments held by inflatable cuffs. Cuffs cast from approved silicone resin. NCD holders insert into rotary stroke bearings. Rotation of both NCDs locked by mechanical linkage with orbit motor. Vertical position with 3 state cam and fine screw. Laser head can rotate and follow NCD eccentricity. Rotate NCD or rotate laser weld head. Side port for making NCD wire connection, He injection and sniffing.

40 Lowering a welded string and its electrical cable

41 Flying the ROV to the string’s anchor position.

42

43 Installed 3 He Counter Strings N 3 He 4 He

44

45 Spectrum of 3 He(n,p) 3 H in K6 string Channel Counts per channel 764 keV AmBe Source Jan. 13, 2004

46 Where do we find SNO in April? Salt phase of SNO now complete. Another 150 days of data being analyzed. Spectral shape, day/night this summer. Neutral-current detectors installed, checkout in progress. Production running with NCDs expected by summer. Run with D2O until Dec. 31, Improved precision on  12,  13, sterile neutrinos, hep, matter- enhancement effects…

The SNO Collaboration T. Kutter, C.W. Nally, S.M. Oser, C.E. Waltham University of British Columbia J. Boger, R.L. Hahn, R. Lange, M. Yeh Brookhaven National Laboratory A.Bellerive, X. Dai, F. Dalnoki-Veress, R.S. Dosanjh, D.R. Grant, C.K. Hargrove, R.J. Hemingway, I. Levine, C. Mifflin, E. Rollin, O. Simard, D. Sinclair, N. Starinsky, G. Tesic, D. Waller Carleton University P. Jagam, H. Labranche, J. Law, I.T. Lawson, B.G. Nickel, R.W. Ollerhead, J.J. Simpson University of Guelph J. Farine, F. Fleurot, E.D. Hallman, S. Luoma, M.H. Schwendener, R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, K.M. Heeger, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E. Rosendahl, R.G. Stokstad Lawrence Berkeley National Laboratory M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, S.R. Elliott, M.M. Fowler, A.S. Hamer, J. Heise, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory S.D. Biller, M.G. Bowler, B.T. Cleveland, G. Doucas, J.A. Dunmore, H. Fergani, K. Frame, N.A. Jelley, S. Majerus, G. McGregor, S.J.M. Peeters, C.J. Sims, M. Thorman, H. Wan Chan Tseung, N. West, J.R. Wilson, K. Zuber Oxford University E.W. Beier, M. Dunford, W.J. Heintzelman, C.C.M. Kyba, N. McCauley, V.L. Rusu, R. Van Berg University of Pennsylvania S.N. Ahmed, M. Chen, F.A. Duncan, E.D. Earle, B.G. Fulsom, H.C. Evans, G.T. Ewan, K. Graham, A.L. Hallin, W.B. Handler, P.J. Harvey, M.S. Kos, A.V. Krumins, J.R. Leslie, R. MacLellan, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat, A.J. Noble, C.V. Ouellet, B.C. Robertson, P. Skensved, M. Thomas, Y.Takeuchi Queen’s University D.L. Wark Rutherford Laboratory and University of Sussex R.L. Helmer TRIUMF A.E. Anthony, J.C. Hall, J.R. Klein University of Texas at Austin T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, J.A. Formaggio, N. Gagnon, R. Hazama, M.A. Howe, S. McGee, K.K.S. Miknaitis, N.S. Oblath, J.L. Orrell, R.G.H. Robertson, M.W.E. Smith, L.C. Stonehill, B.L. Wall, J.F. Wilkerson University of Washington

48 Total Active 8 B Fluxes In units of Bahcall, Pinsonneault, Basu SSM, 5.05 x 10 6 cm -2 s -1 BPB01 SSM Junghans et al. nucl-ex/ ± 0.16 SNO D20 (constrained) 1.01 ± 0.13 SNO Salt (unconstrained) 1.03 ± 0.09

49 Time after muon, s Counts per second N. Oblath

50 16 N in D 2 O Counts per s A.D. Marino

51 ( ,n) Reactions

52 BOREXINO: radiopurity requirements ~ 70  Bq / m 3 in PC (0.3ev/day/100tons) ~ 10Bq / m 3 in air 222 Rn 0.16  Bq/m 3 (0.5  Bq/m 3 ) in N events/day/ton 1.1Bq/m 3 (13mBq/m 3 ) in air 85 Kr, ( 39 Ar) < g/g(PC)~ 1ppm in dustK nat ~ g/g(PC)~ 1ppm in dust ~ 1ppb stainless steel ~ 1ppt IV nylon 238 U, 232 Th 14 C/ 12 C~ C/ 12 C< C Borexino levelTypical Conc. If secular equilibrium is broken: contaminants such as 210 Pb, 210 Po may be a serious problem

53 CC, ES, and NC fluxes from Pure D 2 O Phase Shape of 8 B spectrum in CC and ES not constrained: Standard (Ortiz et al.) shape of 8 B spectrum in CC and ES:

54 Salt Phase: “Box” Opened Aug. 13, 2003 Shape of 8 B spectrum in CC and ES not constrained: Standard (Ortiz et al.) shape of 8 B spectrum in CC and ES: