PowerPoint File available: ~jamesh/powerpoint/ SHSSS_Berlin_2015.pptx.

Slides:



Advertisements
Similar presentations
RHESSI Studies of Solar Flare Hard X-Ray Polarization Mark L. McConnell 1, David M. Smith 2, A. Gordon Emslie 4, Martin Fivian 3, Gordon J. Hurford 3,
Advertisements

SOMO Workshop, 20th Intl AUC Conference, San Antonio, TEXAS, 25th - 30th March, 2012 Small-Angle X-ray scattering P. Vachette (IBBMC, CNRS UMR 8619 & Université.
Bragg’s Law nl=2dsinΘ Just needs some satisfaction!! d Θ l
X-ray Diffraction. X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons “fall”
1. Detector 2. Crystal diffraction conditions
Laue Photography Mathematics Structures time-resolved crystallography neutron crystallography electron crystallography.
Bob Sweet Bill Furey Considerations in Collection of Anomalous Data.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Acknowledgements Christine Gee Janet Newman Tom Peat Center for Structure of Membrane Proteins Membrane Protein Expression Center II Center for HIV Accessory.
Discussion on Strategies Introductory Notes - omega vs. phi scans - beam polarization - single sweep vs. multi sweep - xtal shape as re-orientation/re-centering.
Recent Advances in Protein Powder Diffraction R.B. Von Dreele, XSD/IPNS Argonne National Laboratory, USA “Reaching for High Resolution in Protein Powder.
Diffraction When “scattering” is not random. detector sample detector x-ray beam scattering.
Computed Tomography RAD309
The Origins of X-Rays. The X-Ray Spectrum The X-Ray Spectrum (Changes in Voltage) The characteristic lines are a result of electrons ejecting orbital.
A U.S. Department of Energy laboratory managed by The University of Chicago X-Ray Damage to Biological Crystalline Samples Gerd Rosenbaum Structural Biology.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Lecture 2-Building a Detector George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
PowerPoint File available: ~jamesh/powerpoint/ BNL_2011.ppt.
CHE (Structural Inorganic Chemistry) X-ray Diffraction & Crystallography lecture 2 Dr Rob Jackson LJ1.16,
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
The Future of Structural Biology Disorder? or Dynamics? 10 Å.
Richard A. Livingston Materials Science & Engineering Dept
Protein Structure Determination Part 2 -- X-ray Crystallography.
Simulated diffraction image simulatedreal. SimulatedstatisticReal 5.4%R merge 6.2% 18.9I/sd I/sd (1.4 Ǻ) SDCORR PADFPH31.46.
Lesson 5 Conditioning the x-ray beam
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 18 DR. AUGUSTINE OFORI AGYEMAN Assistant professor of chemistry Department of natural sciences Clayton state university.
Effective lens aperture Deff
A-LEVEL PHYSICS 15/09/ :49 Medical Physics.
Ten Years and Change the MX data archive at ALS
Study of Phase-Dispersive X-Ray Imaging Tomomi Ohgaki and Ichita Endo (Hiroshima Univ.)
Peak intensities Peak widths
Fundamental Limits of Positron Emission Tomography
3. Spot Finding 7(i). 2D Integration 2. Image Handling 7(ii). 3D Integration 4. Indexing 8. Results Gwyndaf Evans 1, Graeme Winter 1, David Waterman 2,
X-Ray Reflection Data Analysis Update Information can be extracted from XRR data: - Film thickness - Roughness.
PHYS 430/603 material Laszlo Takacs UMBC Department of Physics
Lars Ehm National Synchrotron Light Source
PowerPoint File available: ~jamesh/powerpoint/ Oslo_2010.ppt.
Peter J. LaPuma1 © 1998 BRUKER AXS, Inc. All Rights Reserved This is powder diffraction!
Assessing Single Crystal Diamond Quality
John Miao Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Crystallography without Crystals and the Potential of Imaging Single.
Where do the X-rays come from?. Electric charge balloon Wool Sweater
Interaction of X-Rays with Materials
Optimizing structure determination How many are we solving? What is the limit? Are we there yet? Why not? What are the biggest problems?
“hands-off” Screening with TOPAZ Chips For the purposes of testing both crystallization behavior and capability of the “tray goniometer”, chips were built.
Page 1 X-ray crystallography: "molecular photography" Object Irradiate Scattering lens Combination Image Need wavelengths smaller than or on the order.
Chris Hall Monash Centre for Synchrotron Science Monash University, Melbourne, Australia.
3. Spot Finding 7(i). 2D Integration 2. Image Handling 7(ii). 3D Integration 4. Indexing 8. Results 1. Introduction5. Refinement Background mask and plane.
Tests of spectrometer screens Introduction Layout Procedure Results Conclusions L. Deacon, B. Biskup, S. Mazzoni, M.Wing et. al. AWAKE collaboration meeting,
Pattersons The “third space” of crystallography. The “phase problem”
BEST strategy / SAD optimization Gleb Bourenkov EMBL-Hamburg Kappa Workgroup Meeting September 28-29, 2009 MAXLAB.
Beamline summary 1.Strong PRT and staff 2.Robust optics and endstation 3.Safety: stable, simple operations 4.Funding: Operational funding secure.
Atomic structure model
Properties of ElectroMagnetic Radiation (Light)
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Anomalous Differences Bijvoet differences (hkl) vs (-h-k-l) Dispersive Differences 1 (hkl) vs 2 (hkl) From merged (hkl)’s.
Key slides. Holton J. M. and Frankel K. A. (2010) Acta D66, 393–408.
PowerPoint File available: ~jamesh/powerpoint/ ACA_SINBAD_2013.ppt.
Center for Structures of Membrane Proteins © 2006 Optimizing x-ray structure determination James Holton LBNL/UCSF April 6, 2006.
1.1 What’s electromagnetic radiation
Diffraction: Intensity (From Chapter 4 of Textbook 2 and Chapter 9 of Textbook 1) Electron  atoms  group of atoms or structure  Crystal (poly or single)
We are investigating the dependence of efficiency of diamond detector samples on accumulated radiation dose. We have Sr 90  -source of known activity.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
Acknowledgements Christine Gee Janet Newman Tom Peat Center for Structure of Membrane Proteins Membrane Protein Expression Center II Center for HIV Accessory.
Beam Profile Monitor for Spot-Scanning System Yoshimasa YUASA.
Stéphanie Hustache-Ottini S LEIL SYNCHROTRON iWoRID 2011 – 140 – July 5 th Towards ps and fs diffraction with the XPAD detector S. Hustache-Ottini 1, J.-C.
Acknowledgements UCSF LBNL SLAC ALS creator: Tom Alber UC Multicampus Research Programs and Initiatives (MRPI) UCSF Program for Breakthrough Biomedical.
Lecture 53: X-ray crystallography. Electrons deflect x-rays We try to recreate electron density from the x-ray diffraction pattern Each point in space.
Why are. we not solving more struct tures? James Holton University of California San Francisco and Advanced Light Source Lawrence.
1. Detector 2. Crystal diffraction conditions
Serial Femtosecond Crystallography
Presentation transcript:

PowerPoint File available: ~jamesh/powerpoint/ SHSSS_Berlin_2015.pptx

Acknowledgements UCSF LBNL SLAC ALS creator: Tom Alber Center for Structure of Membrane Proteins (CSMP) Membrane Protein Expression Center II (MPEC) Center for HIV Accessory and Regulatory Complexes (HARC) UC Multicampus Research Programs and Initiatives (MRPI) UCSF Program for Breakthrough Biomedical Research (PBBR) Integrated Diffraction Analysis Technologies (IDAT) Plexxikon, Inc. M D Anderson CRC Synchrotron Radiation Structural Biology Resource (SLAC) The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Robert Stroud James Fraser Christine Gee Tom Peat Janet Newman Chris Nielsen Clemens Schulze-Briese Meitian Wang Aina Cohen Ana Gonzalez

Can you count to 1,000,000 ? = 0.1% sqrt(1,000,000) 1,000,000 = 3% sqrt(1,000) 1,000 > 1000 is a waste! photon spot Theoretically: In reality: ISa ~ 33 R meas ≈ 0.1% ?ISa = 1000 R meas = ≈ 3%

Required signal-to-noise (I/σ) Solve-able proteins (%) Current technology Goal Threshold of a revolution in phasing S-SAD 7 keV

SHSSS! The dominant source of error for anomalous difference measurements Spatial Heterogeneity in Sharp Spot Sensitivity Flat Field

SHSSS! The dominant source of error for anomalous difference measurements Spatial Heterogeneity in Sharp Spot Sensitivity Flat Field 90%110% x 1.11 =x 0.91 =100%

SHSSS! The dominant source of error for anomalous difference measurements Spatial Heterogeneity in Sharp Spot Sensitivity Sharp Spot 20%110% x 1.11 =x 0.91 =100%22%

SHSSS! The dominant source of error for anomalous difference measurements Spatial Heterogeneity in Sharp Spot Sensitivity Sharp Spot 90%30% x 1.11 =x 0.91 =27.3%100% Integral: 127.3

SHSSS! The dominant source of error for anomalous difference measurements Spatial Heterogeneity in Sharp Spot Sensitivity Sharp Spot 20%110% x 1.11 =x 0.91 =100%22.2% Integral: 122.2

Spatial Heterogeneity in Sharp Spot Sensitivity

Spot centroid position (pixels) Relative spot intensity Spatial Heterogeneity in Sharp Spot Sensitivity

Spot centroid position (pixels) Relative spot intensity Spatial Heterogeneity in Sharp Spot Sensitivity

SHSSS for MX spots

down

SHSSS for MX spots downup

SHSSS for MX spots downup R separate

SHSSS for MX spots oddeven R mixed

SHSSS for MX spots separate:2.5%

SHSSS for MX spots separate: mixed: 2.5% 0.9%

SHSSS for MX spots separate: mixed: 2.5% 0.9% 2.5% % 2 = 2.3% 2

R separ = sqrt(5.9 2 /mult ) R mixed = sqrt(5.9 2 /mult ) R diff (%) between half-sets Image multiplicity ADSC Q315r 3-pixel shift

R diff (%) between half-sets Pilatus 3-pixel shift Image multiplicity R separ = sqrt(3.7 2 /mult ) R mixed = sqrt(3.7 2 /mult )

R diff (%) between half-sets Image multiplicity Pilatus 1-module shift R separ = sqrt(4.1 2 /mult ) R mixed = sqrt(4.1 2 /mult )

SHSSS Systematic component of R sseparate (%) distance between spots (mm) CCD detector anomalous mates are always on different modules different modules Pilatus SN001 Spatial Heterogeneity in Sharp Spot Sensitivity

Pilatus: 1-module shift

Pilatus: 1-module shift - aligned

Pilatus: 1-module shift - ratio +3% - 3%

SHSSS Systematic component of R sseparate (%) distance between spots (mm) CCD detector anomalous mates are always on different modules different modules Pilatus SN001 Pilatus SN113

Pick-up tool mark Braggglitch oxygeninclusions “tree rings” 1% high average 1% low ~3x10 5 photon/pixel → 0.3% error Pilatus: subtract smooth baseline Gollwitzer & Krumrey (2014) J. Appl. Cryst. 47, 378

Beam Flicker time (seconds) normalized flux through pinhole pinhole removed 0.15%/√Hz

Source of error realistic simulation No SHSSS Perfect detector Photon counting +++ Shutter jitter ++- Beam flicker ++- Sample absorption ++- Radiation damage ++- Imperfect spindle ++- vignette ++- Corner correction ++- SHSSS +-- R meas (∞-10 Å) 2.8%0.7% I/σ asymptotic Threshold of a revolution in phasing Holton et al (2014) "R-factor gap", FEBS Journal 281,

Oh! SHSSS! how do we get rid of it? 1.Calibrate it out 2.Average over it 3.go MAD

Oh! SHSSS! how do we get rid of it? 1.Calibrate it out 2.Average over it 3.go MAD

Detector pixels are 3D 51 μm 31 μm thick 17% loss Typical CCD Mean Penetration depth 12 keV: 17.5 μm Gd 2 O 2 S 237 μm Si 8% side loss 172 μm 26% loss 320 μm thick Pilatus 53% side loss photon 75 μm 15% loss 450 μm thick Eiger 76% side loss photon Arrival angle of 2 Å spot: 29°

NNN θ λ detection event incoming photon Detector pixels are 3D

thickness width NNN Bragg glitch oxygen inclusion θ λ detection event incoming photon Detector pixels are 3D

Oh! SHSSS! how do we get rid of it? 1.Calibrate it out 2.Average over it 3.go MAD

Averaging over SHSSS mult > ( — ) 2 ~3% “true” multiplicity = different pixels

Averaging with systematic error

CCD calibration: 7235 eV

CCD calibration: 7247 eV

Gadox calibration vs energy photon energy (keV) Relative absorption depth same = good! bad! Mar?

Detector calibration: 7247 eV target: oil distance: 900 mm 2θ: 12°

Detector calibration: 7235 eV target: oil distance: 900 mm 2θ: 12°

ADSC Q315r SN 926 (ALS 8.3.1) -10% +10%

ADSC Q315r SN )

Detector calibration calibration error (%) megapixels

7247 eV

7235 eV

Detector calibration 7223 eV

Never use same pixel twice Detector calibration eV Radiation Damage - 1% error per MGy Isomorphous crystals - Humidity! - Friend or foe? Averaging over SHSSS

Never use same pixel twice Detector calibration eV Radiation Damage - 1% error per MGy Isomorphous crystals - Humidity! - Friend or foe? Averaging over SHSSS

Never use same pixel twice Detector calibration eV Radiation Damage - 1% error per MGy Isomorphous crystals - Humidity! - Friend or foe? Averaging over SHSSS

R iso vs dose R iso (%) change in dose (MGy) data taken from Banumathi, et al. (2004) Acta Cryst. D 60, R iso ≈ 0.7 %/MGy

Damage Limit → Dose slicing N photons N photons unacceptable damage N photons unacceptable read noise 1 um 3 xtal = 10 6 photons

140-fold multiplicity SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION RESOLUTION NUMBER OF REFLECTIONS COMPLETENESS R-FACTOR R-FACTOR COMPARED I/SIGMA R-meas CC(1/2) Anomal SigAno Nano LIMIT OBSERVED UNIQUE POSSIBLE OF DATA observed expected Corr % 3.9% 4.8% % 100.0* 91* % 5.2% 5.5% % 100.0* 86* % 7.2% 7.0% % 100.0* 76* % 7.2% 6.6% % 100.0* 67* % 7.7% 6.7% % 100.0* 59* % 9.4% 8.3% % 100.0* 49* % 11.2% 10.1% % 100.0* 39* % 14.1% 13.9% % 100.0* 30* % 19.5% 20.2% % 100.0* 23* % 29.0% 31.7% % 99.9* 17* % 40.5% 44.8% % 99.8* 11* % 52.8% 58.8% % 99.8* 10* % 67.4% 76.0% % 99.6* % 88.9% 101.2% % 99.2* % 109.3% 125.5% % 98.1* % 138.2% 161.4% % 96.1* % 197.1% 231.7% % 83.5* % 227.3% 268.7% % 46.9* % 154.4% 169.4% % 47.0* % 170.1% 187.0% % 25.7* total % 15.7% 16.4% % 100.0* 12* crystals, 360° each, < 1 MGy, inverse beam 7235 eV ADSC Q210r Australian Synchrotron MX1 I/SIGMA

140-fold multiplicity 18 σ Phased anomalous difference Fourier data Courtesy of Tom Peat & Janet Newman 16 σ Not Lysozyme!

140-fold multiplicity 15σ = PO 4 Phased anomalous difference Fourier data Courtesy of Tom Peat & Janet Newman Not Lysozyme!

140-fold multiplicity ~2σ = Mg? Phased anomalous difference Fourier data Courtesy of Tom Peat & Janet Newman Not Lysozyme!

140-fold multiplicity 8.2σ = Na DELFAN residual anomalous difference data Courtesy of Tom Peat & Janet Newman 10 σ is enough for phasing! Bunkoczi et al. (2015)."weak, single-wavelength anomalous", Nat. Meth. 12, Not Lysozyme! f” = 0.15

Discerning Na + from Mg ++ f’’ (electrons) DELFAN peak height (σ) Mg Ne Na F O N

Never use same pixel twice Detector calibration eV Radiation Damage - 1% error per MGy Isomorphous crystals - Humidity! - Friend or foe? Averaging over SHSSS

RH: 84.2% vs 71.9% R iso = 44.5% 3aw6 3aw7 Δcell = 0.7 % Non-isomorphism in lysozyme RMSD = 0.18 Å

Never use same pixel twice Detector calibration eV Radiation Damage - 1% error per MGy Isomorphous crystals - Humidity! - Friend or foe? Averaging over SHSSS

h,k,l structure factors (F) #1#2#3#4 5,3, ,4, ,5, ,1, ,2, ,3, ,3, … ………… X-ray Data Sets h,k,l 100 % 17 % 13 % 9%9% 1 st 2 nd 3 rd 4 th 5,3, ,4, ,5, ,1, ,2, ,3, ,3, … ………… data set Singular value decomp. SVD vector value Singular values & vectors Correlation Coefficients CC2 CC3 CC1 CC1 CC2 CC3 data set #1 Data sets Positioned in “Correlation Space” data set #2 data set # …

Correlation to 2 nd & 3 rd singular vectors Structure factor (electrons)

Correlation to 2 nd & 3 rd singular vectors Structure factor (electrons)

Correlation to 2 nd & 3 rd singular vectors Structure factor (electrons)

CC = 0.02 Phases from non-isomorphism? DMMULTI – fake data - 4 deg rotation: 8 “xtals”

CC = 0.8 DMMULTI – fake data - 4 deg rotation: 8 “xtals” Phases from non-isomorphism!

Oh! SHSSS! how do we get rid of it? 1.Calibrate it out 2.Average over it 3.go MAD

Photon Energy (eV) Anomalous f” (electrons) Bohic et al. Anal. Chem. 2008; 80(24):9557. doi: /ac801817k

Two wavelengths are better than one

Required signal-to-noise (I/σ) Solve-able proteins (%) Current detectors

Excellent signal at S edge eV x Radiation Damage x Self absorption Pro & Con of S-MAD

S-MAD Sample size Dilemma

Darwin’s Formula I spot - photons/spot (fully-recorded) I beam - incident (photons/s/m 2 ) r e - classical electron radius (2.818x m) V xtal - volume of crystal (in m 3 ) V cell - volume of unit cell (in m 3 ) λ- x-ray wavelength (in meters!) ω- rotation speed (radians/s) L- Lorentz factor (speed/speed) P- polarization factor A- attenuation correction F 0 - structure factor at T = 0 B- Debye-Waller-Ott factor s- 0.5/d-spacing C. G. Darwin (1914) P A | F 0 e -Bs 2 | 2 I spot = I beam r e 2 V xtal V cell λ3 Lλ3 L ωV cell

Where:  I  DL - average damage-limited intensity (photons/hkl) at a given resolution converting R from μm to m, r e from m to Å, ρ from g/cm 3 to kg/m 3 and MGy to Gy r e - classical electron radius (2.818 x m/electron) h- Planck’s constant (6.626 x J∙s) c- speed of light ( m/s) f decayed - fractional progress toward completely faded spots at end of data set ρ- density of crystal (~1.2 g/cm 3 ) R- radius of the spherical crystal (μm) λ- X-ray wavelength (Å) f NH - the Nave & Hill (2005) dose capture fraction (1 for large crystals) n ASU - number of proteins in the asymmetric unit M r - molecular weight of the protein (Daltons or g/mol) V M - Matthews’s coefficient (~2.4 Å 3 /Dalton) H- Howells’s criterion (10 MGy/Å) θ- Bragg angle  a 2  - number-averaged squared structure factor per protein atom (electron 2 )  M a  - number-averaged atomic weight of a protein atom (~7.1 Daltons) B- average (Wilson) temperature factor (Å 2 ) μ- attenuation coefficient of sphere material (m -1 ) μ en - mass energy-absorption coefficient of sphere material (m -1 ) Self-calibrated damage limit Holton & Frankel (2010) Acta D

wavelength dependence crystal diameter (μm) Damage-limited minimum crystal size Holton & Frankel (2010) Acta D

Where do photons go? beamstop 97% transmitted 1 Å x-rays attenuation correction error cannot be > ~3% 100 μm thick protein

attenuation correction Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière. Lambert, J. H. (1760). Photometria: sive De mensura et gradibus luminis, colorum et umbrae. E. Klett. Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, A = = exp(-μt) I T I beam t μ

attenuation correction Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière. Lambert, J. H. (1760). Photometria: sive De mensura et gradibus luminis, colorum et umbrae. E. Klett. Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, A = = exp(-μ(t in + t out )) I T I beam t t in t out A = = exp(-μt) I T I beam μ

attenuation correction Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière. Lambert, J. H. (1760). Photometria: sive De mensura et gradibus luminis, colorum et umbrae. E. Klett. Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, A = = exp(-μ(t in + t out )) I T I beam t in t out t in t out t in t out μ

attenuation correction Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière. Lambert, J. H. (1760). Photometria: sive De mensura et gradibus luminis, colorum et umbrae. E. Klett. Beer, A. (1852)."Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", Ann. Phys. Chem 86, A = = exp[-μ xtal (t xi + t xo ) -μ solvent (t si + t so )] I T I beam μ xtal t xi t xo t si t so t xi t xo t si t so t xi t xo t si t so μ solvent

1 μm crystal≈ 1 μm water ≈ 1 μm plastic ≈ 0.1 μm glass ≈ 1000 μm air ~ 50 mm He ≈ 370 mm water 4C Scattering/absorption “rules”

Where do photons go? beamstop 97% transmitted 1 Å x-rays attenuation correction error cannot be > ~3% 100 μm thick protein

Where do photons go? beamstop 2% transmitted 5 Å x-rays attenuation correction error can be ~98% 100 μm thick protein

Where do photons go? beamstop 96% transmitted 5 Å x-rays attenuation correction error cannot be > ~4% 1 μm thick protein

“sweet spot” for sample size ? S P Mg Na C F N O Cl Ar K Ca Ne Se

Excellent signal at S edge eV x Radiation Damage - min size ~ 100 μm x Self absorption - 20 μm error = 50% error Pro & Con of S-MAD

Dose-rate dependence of damage dose rate (kGy/s) maximum useful dose (MGy) 1 um 3 xtal = 10 6 photons 1 um 3 xtal = 10 8 photons

0.006° 1 μm xtal 1 Å x-rays Lovelace et al. (2006)."topography", J. Appl. Cryst. 39, The “partiality problem” at XFEL

mult > ( — ) 2 ~100% Gd lyso: ΔF/F = 8.7% → mult = 132 The “partiality problem” at XFEL Barends et al. (2014) Nature 505,

Ewald sphere 2 diffracted ray λ*λ* λ*λ* θ 1 Ewald sphere λ*λ* (h,k,l) diffracted ray λ*λ* θ d* Osculating Ewald Spheres: SINBAD (-h,-k,-l) d*

h,k,l -h,-k,-l Detector λ = 5 Å sample injector Si(111) 52.87deg Si(111) 2 Multilayer mirrors d=2nm, W/B4C KB Horiz focus KB vertical focus ~ 1m

“sweet spot” for sample size ? 2 Å 2sin(90°) 3 Å 2sin(90°) S P Mg Na C F N O Cl Ar K Ca Ne Se 4 Å 2sin(90°)

Excellent signal at S edge eV x Radiation Damage - min size ~ 100 μm x Self absorption - 20 μm error = 50% error Solutions - outrun damage at XFEL - Bragg geometry? Pro & Con of S-MAD

Diamond ($100, reusable)

Diamond ($100, reusable) oil ?

Diamond ($100, reusable) oil ?

λ=2d sinθ 2.5 Å data with 5 Å X-rays Only analytic absorption correction: International Tables for Crystallography, Vol. C, 2nd ed., chapter 6.3

Excellent signal at S edge eV x Radiation Damage - min size ~ 100 μm x Self absorption - 20 μm error = 50% error Solutions - outrun damage at XFEL - Bragg geometry? Pro & Con of S-MAD

The Way Forward: 1.Calibrate it out - Impossible for CCDs - 3D pixel model on PADs 2.Average over SHSSS - non-isomorphism: foe or friend? 3.go MAD -XFEL/SINBAD cancels errors -Return to Bragg geometry (analytic absorption) SHSSS_Berlin_2015.pptx