Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
18. March 2009 Mitglied der Helmholtz-Gemeinschaft Quantum Computing with Quantum Dots IFF Spring School | Carola Meyer.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
S. Y. Hsu ( 許世英 ) and K. M. Liu( 劉凱銘 ) May 29, 2007 NSC M and NSC M Department of Electrophysics, National Chiao Tung University.
Quantum Computing with Trapped Ion Hyperfine Qubits.
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
J.S. Colton, ODMR studies of n-GaAs Optically-detected magnetic resonance studies of n-GaAs Talk for APS March Meeting, Mar 20, 2009 John S. Colton, Brigham.
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
DeMille Group Dave DeMille, E. Altuntas, J. Ammon, S.B. Cahn, R. Paolino* Physics Department, Yale University *Physics Department, US Coast Guard Academy.
IWCE, Purdue, Oct , 2004 Seungwon Lee Exchange Coupling in Si-Quantum-Dot-Based Quantum Computer Seungwon Lee 1, Paul von Allmen 1, Susan N. Coppersmith.
Electron Spin Resonance Spectroscopy
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Dynamical decoupling in solids
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
G. S. Diniz and S. E. Ulloa Spin-orbit coupling and electronic transport in carbon nanotubes in external fields Department of Physics and Astronomy, Ohio.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Single-shot read-out of one electron spin
Single spin detection Maksym Sladkov Top master nanoscience symposium June 23, 2005.
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Seung Hyun Park Hyperfine Mapping of Donor Wave Function Deformations in Si:P based Quantum Devices Seung Hyun Park Advisors: Prof. Gerhard Klimeck Prof.
Electrical control over single hole spins in nanowire quantum dots
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Measuring Quantum Coherence in the Cooper-Pair Box
Singlet-Triplet and Doublet-Doublet Kondo Effect
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
S. E. Thompson EEL Logic Devices Field Effect Devices –Si MOSFET –CNT-FET Coulomb Blockade Devices –Single Electron Devices Spintronics Resonant.
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
1 Quantum Computation with coupled quantum dots. 2 Two sides of a coin Two different polarization of a photon Alignment of a nuclear spin in a uniform.
Charge pumping in mesoscopic systems coupled to a superconducting lead
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs
Soft and hard mode switching in gyrotrons
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance.
FAM Mirko Rehmann March
Optimal Interesting Quantum Gates with Quantum Dot Qubits David DiVincenzo Spinqubits summer school, Konstanz Hall Effect Gyrators and Circulators.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
How do spins interact with
Hole Spin Decoherence in Quantum Dots
Presentation transcript:

Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP (Int. Cooperative Research Project) - JST (Japan Science & Technology) Frontiers of Spintronics and Spin Coherent Phenomena in Semiconductors: A Symposium in Honor of E.I. Rashba 29 Feb. – 1 Mar, 2008 Harvard University Y. Tokura (NTT) M. Pioro-Ladriere T. Obata Y-S Shin S. Yoshida K. Hitachi ICORP Tokyo-U

Outline Micro-magnet technique for manipulating individual electron spins in quantum dots Spin rotation using a slanting Zeeman field and ac voltage Coexisting contributions from spin-orbit interaction and fluctuating hyperfine field Addressing two spins at different f ESR ’s Ability of making scalable qubits

Concept of Spin Qubit = ESR Static B z AC B x ESR Hamiltonian Qubit: a| >+b| > SLSL SRSR Loss and DiVincenzo PRA(1998) ac B DC B 0 ac I B ac induced by I ac flowing a coil I AC = 1 mA B ac ~ 1 mT  rotation: ~ 80 ns To address individual spins F. Koppens et al. Science 06 Straight forward, but problems of heating and designing for more qubits

From current drive to voltage drive for ESR Exchange control in a double quantum dot : Spin qubit with a basis of two-spin states J. Petta et al. Nature 05 (inter-dot coupling gate modulation) Exchange Vac z Electric dipole spin resonance (EDSR) via local interaction between electron spin and electric field V.N. Golovach et al. PRB 06 (Theory) K.C. Nowack et al. Science 07 Inhomogeneous hyperfine interaction E.A. Laird et al. PRL 07 Spin-orbit interaction Y. Tokura, ST, et al. PRL 06 M. Pioro-Ladriere, ST et al. APL 07 Electron oscillation in a slanting Zeeman field formed by a micro-magnet We proposed….

Electron Motion in a Slanting Magnetic Field Global dc B field and local ac E field  m x 1 nm = 1 mT ac B field

Slanting Field Induced by Ferromagnets Mater ial T C ( o C)  0 M S (T) b SL (T/  m) Fe Co Py Ni permanent magnets (5 mm x 0.5  m x 0.5  m) separated by 0.5  m gap y z x x = z = 0 Simulation results (Radia©+Mathematica): z y x x x ~1T/  m J.R.Goldman et al.,2000 J. Wrobel et al.,2004 Y. Yamamoto et al. Dy, Gd,….

Device Co 300 nm ESR V AC V AC = V 0 sin(2  ft) M Co 2DEG calixarene double-dot GaAs AlGaAs gate B0B0 dot 1dot 2 I dot Micro-magnet ESR gate b SL ~ 0.6 T/  m (saturation) 75 x (  m) B z (mT) 0 b SL 0 70 nm 80 nm 90 nm 300 nm M Co = 1.8 T Simulation M.Pioro-Ladriere, ST,.. APL 07

Formation of Double Quantum Dot VLVL VRVR (N L, N R ) = (0,0) (1,0) (0,1) (1,1) By adjusting two side gate voltage, A double quantum dot is formed. x z M Co 2DEG calixarene double-dot GaAs AlGaAs gate B0B0 70 nm dot 1dot 2 (0,1) (1,1) (0,0)(1,0) V g1 V g2 Stability diagram for double QD (2,0)

(1,0) ← (2,0) ← (1,1) ← (1,0) Ono, ST Science 02 Spin blockade (SB) region: Pauli exclusion principle → transport is blocked S D EZEZ E’ Z ECEC I dot (pA) 0 1 V SD = +1.4 mV, B 0 = 2 T V L (V) V R (V) (1,0) ( N 1,N 2 ) = (2,1) (1,1) SB LR I dot Two-electron double-dot is formed using appropriate gate bias. Stability diagram (high V SD ) (2,0) ESR Signal Detection using P-SB Koppens et al. Nature 06  I dot ESR on

13.6 GHz 14.1 GHz 14.9 GHz 15.5 GHz 16.1 GHz 16.7 GHz 17.3 GHz 17.9 GHz g = 0.41  B 0 =-65mT  B 0 = 0 mT g  B (B 0 +  B 0 )=hf ESR  B 0 = -65 mT for B 0 > 1 T 0 mT for B 0 0 …consistent with stray field Voltage Driven ESR using a Micro-magnet = 2.4 mT from f ESR fluctuations B AC ~ 1 mT

Static Zeeman field: B 0 +  B 0 Slanting Zeeman field: b SL 75 b SL ~ 0.6 T/  m (saturation) x (  m) B z (mT) 0 b SL 0 dot 1dot 2 B0B0 M 70 nm 80 nm 90 nm 300 nm M Co = 1.8 T B0B0 M x z dot 1dot 2 x (  m) B x –B 0 (mT) d ZZ -50 x1x1 x2x2  B 01  B 02 Effect of Magnetization of Ferromagnet → Shift of f ESR →Change of I ESR  B 0, b SL ∞ Magnetization of micro-magnet External B field Magnetization ~ 1 T Stray field of micro- magnet

B ESR = B Slant + B Hyper ± B SO ±: depending on crystal orientation Three contributions to I ESR coexist… They have different dependencies on B 0. ESR field generated by n-spin fluctuations  x ~ E AC B 0 -independent Spin-orbit  k ~ E AC ~B 0 Slantig Zeeman  x ~ E AC ~B 0 for B 0 < B s B 0 -independent for B 0 > B s Laird et al. PRL 07 Nowack et al. Science 07 B 0 dependence important

PAT: (1,1) triplet to (2,0) triplet From the power dependence and using the Bessel function We get E AC ~ 10  V/cm, large enough to drive the ESR. V L (V) V R (V) (1,0) (2,1) (1,1) I dot (pA) 0 10 V SD = +1.4 mV f = 25 GHz, -40 dBm  T(2,0) S(2,0) hf  Power (-dBm)  = 1  = 2  = 5 Power dependence of the T(1,1)-T(2,0) resonance. W. G. van der Wiel Rev. Mod. Phys. 75 (2003) T(1,1) Evaluation of High-frequency Electric Field E AC ….Using PAT 0.1  m E AC ESR V AC E0E0

Peak amplitude vs. external field B 0 < B S Magnetization region Increasing B 0, b SL Increasing I ESR Nuclei spin fluctuations + Hyperfine interaction = Effective nuclei slanting field b N SL ↓ Hyperfine driven ESR Laird et al, PRL2007 Contributions from Hyperfine Fields ~1.6 T Low B 0 field: B Slant,B Hyper >> B SO

SO Contributions from SO Effect Saturation point (E AC *) B AC ~ 1 mT. ESR field estimated from power dependence of I ESR (B 0 > 2T) B 0 =2.14 T B AC ~ B N /2 Nowack et al Science (2007) QD confinement energy Orbital spread b SL = 0.8 T/  m High B 0 field: B Slant, B SO >> B Hyper

RashbaDresselhaus SO Interaction Depending on Crystal Axis GaAs substrate [110] EBext [110] Our device

With micro-magnet, we can view the SO as an effective slanting field Our data suggests l SO > 0, i.e. l  < l   since E AC is along with b SL = 0.8 T/  m Delft work without micro-magnet: l SO =35  m K.C Nowack et al, Science (2007) l SO  > 

V ac  ESR RR With A 1 = 1.5 pA, A 2 = 9.5 pA, T 2 = 362 ns, Rabi = 0.8 MHz  R = 2  s f = 13.6 GHz Power = dBm Rabi Oscillations in Microwave Burst Exp.

Two Spins in a Displaced Ferro-magnet |  B 0 (Dot L)||  B 0 (Dot R)| > f ESR (Dot L)f ESR (Dot R)< Dot L Dot R  f > 1/T 2 * Address two spins at two different f ESR ’s If stray field from micro-magnet Then

Frequency vs. external field ( B 0 > B S )  Z = 13 ± 4 mT ZZ 13.71GHz hf = g  B B 1 hf = g  B B 2 ZZ d ~ 100 nm →  Z ~ 20 mT Expected Zeeman field profile x (  m) B0B0 M x z B x –B 0 (mT) d ZZ -50 dot 1dot 2 50 nm misalignment B 1 – B 0 B 2 – B 0 x1x1 x2x2 Addressing Two Spins at Different Frequencies Laird et al., PRL07 Two-spin address using Hyperfine+Micormagnet

f ESR1 f ESR2 f ESR3 B 0 +  B 1 +B2+B2 +B3+B3 Condition:  f ESR > 1/T 2 Addressing individual spins at different f ESR ’s Specific pattern of ferromagnets

z  B 0 (mT) b SL (T/  m) ~ 200 mT: 1.2 GHz b SL > 1 T/  m b SL x B0B  m thick Co (0.5  m W x 2  m L) Multiple Qubit Design Using Micro-magnets Strips separation d (  m) for d = 0.07 to 0.37  m For  f = 20 MHz ~ 1/T 2 ~60 qubits with  d ~ 5 nm d d Slanting field f ESR shift ~0.3  m

Conclusion Voltage-driven single spin resonance (EDSR) using a slanting Zeeman field Developed a spin resonance technique using a micro- magnet Distinguished contributions from SO interactions and fluctuating hyperfine field Demonstrated two-spin addressing at different f ESR ’s Proposed a way of implementing scalable qubits using a micromagnet technique Micro-magnet tech. … G ood for any normal materials