Lecture 9.0 Silicon Oxidation/Diffusion/Implantation
Silicon Oxidation Reactor –Furnace at T=850C –Pure Oxygen Si + O 2 SiO 2 Kinetics –BL-Mass Transfer J=K g (C A -0) –SS-Diffusion J=D O-SiO2 (dC/dx) –Heat Transfer BL, q=h(T 1 -T) Solid, q=k SiO2 (dT/dx) –J=q/ H rxn G rxn <0, Spontaneous
Kinetics Thickness –Linear Rate Reaction Control –First Order BL-MT Control BL-HT Control –Parabolic Rate Product diffusion Control Product heat transfer Control J =(dx/dt) SiO2 /MW SiO2
Thickness Experiments Parabolic Rate –Derive it! –dx 2 /dt=2K K=K o exp(-E a /R g T) t=0 x= at t= –Very common!! Slow Solid State Diffusion Slow Heat Conduction
Field Oxide Thick oxide –Oxygen –Steam High Temperature Reaction
Diffusion Deposition of B or P on surface Heat and Hold for period of time –Solid State Diffusion –dC/dt=D d 2 C/dx 2 C=C o at x=0 C=0 at x= –C=C o (1-erf[x/ (4Dt)]) Etch excess B or P from surface
Concentration Profile time
Diffusion Coefficient Self Diffusion –D*=D o exp(-E a /R g T) Diffusion of A in B Depends on A and matrix B –D AB =(D* A X B + D* B X A ) (d ln [a A ]/d ln [X A ]) –d ln [a A ]/d ln [X A ] = 1+ (d ln [ A ]/d ln [X A ]) –d ln [a A ]/d ln [X A ] ~ 1 for ideal solutions And D AB =(D* A X B + D* B X A ) = (D* A (1-X A ) + D* B X A ) Note Concentration dependence!! D AB ~D* A when X A ~0, the dilute solution limit – Good for dopants
Implantation Energy Loss Stopping of Ion –Nuclear cross section, S n (E) –Electronic cross section, S e (E) –ρ T = atomic density of target (#/cc)
Average Range Integration of Energy Loss equation
Implantation Create Ions in Vacuum Accelerate in Electric Field
Implantation Impinge onto Silicon Surface Knock out Si ion(s) –Charge Balance Travel deep into Silicon
Implantation Effect of Ion Mass M i >M Si M i <M Si
Implant Depth Depth Increases with Energy
Implantation Straggle Increases with Energy
Implantation Concentration Profile Probability Based N(x)=N max exp[(x-x ave ) 2 /2 x 2 ] N max =(N dose /[ (2 ) x ])~(0.4 N dose / x ) N dose =Q dose /e Q dose = current applied/cm 2 σ x = standard deviation of projected range
Implantation Through Slit Slit opening = a N(x) =projected range formula ΔR = transverse straggle
Mask Thickness To effectively prevent ions penetrating in thick zone Relatively thick Oxide Protection layer Patterned Thinning (etching) of Oxide Protection layer over implantation zone Remove oxide layer with impurities inside
Mask Thickness Transmission through mask –T=1/2 erfc[( x-x ave )/ 2 x ] To stop 99.99% of implanted materials, T=10 -4 Solve for x, the thickness to stop 99.99% of ions.
SiO 2 Mask Thickness
Si 3 N 4 Mask Thickness
Photoresist Mask Thickness
Implant Depth Depth Increases with Energy
Diffusion of Implanted Dopants Diffusion Furnace or Laser Heat Treatment –Solid State Diffusion –dC/dt = C T d/dz ( D AB dX A /dz ) C=C o (z) = C T X A (z) at z=0 C=0 at z= –D AB =(D* A X B + D* B X A ) (d ln [a A ]/d ln [X A ]) –Interdiffusion or mutual diffusion coefficient
Laser Annealing