Teiji Kunihiro (YITP, Kyoto) A Summary and Concluding Remarks Chiral05 RIKEN Feb. 15-17, 2005.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Lattice study for penta-quark states
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
EXOTIC ATOMS/NUCLEI T. Yamazaki, RIKEN Yukawa mesons (1935) Anderson PR51(1937), Nishina PR52(1937): muon Tomonaga-Araki, PR58(1940): mesonic atom formation.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
FIAS June 25-27, Collaboration: Phys.Rev. C 74 (2006) Phys.Rev. C 77 (2008)
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Teiji Kunihiro (YITP, Kyoto) Dubna round table session July 7-9, 2005 JINR, Dubna, Russia Status of the chiral symmetry restoration and sigma-meson physics.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
The  process in nuclei and the restoration of chiral symmetry 1.Campaign of measurements of the  process in N and A 2.The CHAOS spectrometer.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Some Topics on Chiral Transition and Color Superconductivity Teiji Kunihiro (YITP) HIM Nov. 4-5, 2005 APCTP, Pohang.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Application of coupled-channel Complex Scaling Method to Λ(1405) 1.Introduction Recent status of theoretical study of K - pp 2.Application of ccCSM to.
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Teiji Kunihiro (Kyoto) Based on the works done in collaboration with
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
1.Introduction 2.Exotic properties of K nuclei 3.Recent experimental results Strange tribaryons by KEK experiment ppK - by FINUDA ppnK - by FOPI 4.Future.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
1 Medium modifications on vector meson in 12GeV p+A reactions Introduction Result of   e + e - analysis Result of   e + e - analysis Result of 
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
Lattice QCD at finite density
Spectral functions of mesons at finite temperature/density Talk at the 31 st Reimei workshop on hadron physics in extreme conditions at J-PARC, Tokai,
Strangeness Hadrons in Few-Body Nuclei Yoshinori AKAISHI, Akinobu DOTE and Toshimitsu YAMAZAKI Deeply bound kaonic states K-K- Atomic states Nuclear state.
Unique Feature and Perspectives of Nuclear K Bound Systems K-K- Atomic states Nuclear state Chiral05 Feb. 17, 2005 Yoshinori AKAISHI, Akinobu DOTE and.
Cosmological constant Einstein (1917) Universe baryons “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
A search for strange tribaryonic states in the reaction H. Yim for KEK-E549 collaboration H. Bhang, J. Chiba, S. Choi, Y. Fukuda, T. Hanaki, R. S. Hayano,
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Exotic Atoms and Exotic 05,RIKEN 16 Feb. ’05 S. Hirenzaki (Nara Women’s Univ.)
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
H.Nagahiro, S.Hirenzaki, Phys.Rev.Lett.94 (2005) H.Nagahiro, M.Takizawa, S.Hirenzaki, Phys.Rev.C74 (2006) D. Jido, H. Nagahiro, S. Hirenzaki,
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Deeply-Bound K-Nuclear States Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI A new paradigm in Nuclear Physics K-K- Atomic states Nuclear state DA.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Current theoretical topics on K - pp quasi-bound state Sajjad MARRI and Toshimitsu YAMAZAKI  Theoretical interpretation of J-PARC E15 and E27 results.
Possible hadron physics To be done With use of unstable nuclei Teiji Kunihiro (Kyoto U.) Yonsei University, Korea.
Dilepton and the QCD CP What is the QCD CP Dileptons.
Kaon Absorption from Kaonic Atoms and
Hadron spectroscopy Pentaquarks and baryon resonances
Precursory Phenomena in Chiral Transition and Color Superconductivity
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
η-mesic nucleus by d + d reaction ー how to deduce η-Nucleus int. ー
Deeply Bound Mesonic States -Case of Kaon-
Infrared Slavery Above and Hadronic Freedom Below Tc
Theory on Hadrons in nuclear medium
Presentation transcript:

Teiji Kunihiro (YITP, Kyoto) A Summary and Concluding Remarks Chiral05 RIKEN Feb , 2005

CS C T   SB QGP QCD critical point meson condensation? ?  0 CFL QCD phase diagram H matter?

What Lattice tells us on the possible CEP

Quark number susceptibility (S.Ejiri) We find a pronounced peak for q/T~ 1. Critical endpoint in the (T,)? Critical endpoint in the (T,  )? Peak position moves left as  increases, corresponds to the shift of Tc()

Color SuperConductivity Nice summary by M. Buballa charge neutralities and beta eq. and Ms>>Mu,d Various interesting complications; dSC (Matsuura);GL approach at T~Tc gapless SC ’ s and its instability; Interplay with chiral condensates (Buballa, Abuki et al) Imaginary Gluon Meissner mass Pressure  Normal QM never realized? A unified approach both for NM and QM(S. Lawley) LOFF?

Abuki, Kitazawa and T.K.(hep-ph/ )

The Physical Picture of the QCD matter above Tc Charmonia survive QCD ph. Tr. (T. Hatsuda) Precursory Soft modes Chiral (T.Hatsuda and T.K. ;1985) CSC (M. Kitazawa et al) and their effects on quark spectra eg. pseudogap (M. Kitazawa et al)

Spectral function ρ(ω) J/ψ(3.1 GeV) 1.J/ψ survives up to 1.6 Tc 2. J/ψ disappears in 1.6 Tc < T < 1.7 Tc Umeda et al, hep-lat/ Datta et al., PRD 69 (’04) Asakawa & Hatsuda, PRL 92 (’04) J/ψ and η c above T c (quenched simulation) Dependent on volume of the Lattice

QCD phase structure BCS-BEC crossover Leggett, Lec. Notes in Phys. (’82) Abuki, Itakura & T.H. Phys. Rev. D (’02) Cond. of Fermionic-Atom Pairs 40 K 40 K : JILA, PRL 92 (2004) 6 Li : Innsbruck, MIT, PRL 92 (2004) M.Kitazawa et al T.Hatsuda-T.K. M.Kitazawa et al Based on Hatsuda ’ s figure

Powerful Theoretical Approach to BCS-BEC crossover Exact Renormalization group (M. Birse) a first attempt; promising higher order corrections beyond MF turned out small. a long line of the to-do list.

Mesons in Nuclei, as probes of Chiral properties General Introduction; S. Hirenzaki, K.Itahashi Deeply bound pionic nuclei; the existence itself interesting and also play a role as a powerful probe of the chiral properties of the nuclear matter! 30% reduction of quark condensate! depends on the estimate of the radii the validity of GOR at finite density seems O.K. in the medium chiral pert. Exp.

Physics Motivation Evaluate the order parameter of Chiral symmetry restoration quantitatively with small ambiguity.

Pion-nucleus Isovector interaction strength Theoretical study to investigate the effect of partial restoration of chiral symmetry on the modification of isovector interaction strength. in vacuum b 1 is changed in nucleus.

Gell-mann-Oakes-Renner relation Tomozawa-Weinberg relation Theoretical Treatment Bringing these relations to finite density medium, we obtain... Meissner et al. Ann. Phys.297(2002)27 Kolomeitsev et al, PRL90(02) input

Pion-nucleus Isovector interaction strength Theoretical treatment 33% reduction of Largest ambiguity comes from the uncertainties in the matter radii of nuclei.

Experiment should be made and is being anallyzed: Spring-8 (Muramatsu) (Metag); CB/TAPS 4 Vecotr Mesons Hatsuda-Lee, Brown-Rho: vacuum change (chiral tr.) leads to a mass shift of the vector mesons. KEK-PS (Yokkaichi): show a mass drop!

The data from Nb target shows (Metag); Charmed mesons in the Theory: QCD sum rules (Hayashigaki) modification of D mesons, relevant for J/Psi suppression from the hadron origin (KEK-PS;Yokkaichi) Cabrera: a theory on Consistency between KEK-PS v.s. LEPS, the latter of which shows a large absorption beyond the theoretical expectation.

What is the Vector Mesons, especially, What is their chiral properties? An answer: Hidden local Symmetry approach (Bando etal) Vector Manifestation occurs at T~Tc? (1/2, 1/2) + ((3.1)+(1,3)) representation Pure (3,1)+(1,3) pi and rho get degenerated?! Yes, according to C. Sasaki, M. Rho through the theory of Harada and Yamawaki. Lattice calculation and hopefully will tell through checking the many interesting predictions, including Theta+ in the Skyrm model (Rho)

+ +  1540  10 MeV  < 25 MeV Gaussian significance 4.6  background T. Nakano et al., Phys.Rev.Lett. 91 (2003) Renaissance of hadron spectroscopy !  

New Experiment and New analysis by LEPS (Nakano) The peak is there! little produced by the rescattering, but Correlated with (1520) Which may tell us the nature of ! Theoretical works: Overview by M. OKa Detailed analysis of the decay width (Hosaka) -  3/2^(+,-)? But a lattice cal. suggests ½ ^- (T.T.Takahashi et al) even in nuclei, i.e., hypernuclei might exist! Can be tested in J-PARC and J-Lab.

NK scattering state vs Pentaquark state( T.T. Takahashi et al)  Small L Large L  (u,d,s)=(100,100,100)MeV (u,d,s)=(100,100,240)MeV (u,d,s)=(240,240,100)MeV(u,d,s)=(240,240,240)MeV M N +M K NK scattering Mass (GeV) 1fm 2.4fm 4fm

Meson: Related to Anomaly; otherwise ; ideal mixing realized Also selective coupling of with N*(1535) chiral dynamics v.s. Chiral doublet (a la DeTar-Kunihiro( ‘ 89) )type? a funny density dependence of the opt. pot. in the latter. Hayano, Nagahiro: Near future experiment in GSI!

; energy-momentum tensor of QCD Quantum effects! () Current divergences and Quantum Anomalies Dilatation Chiral Anomaly Dilatation(scale) Anomaly

Problem # of the generators 2x(8+1)=18 1+8=9 G= H= # of NG-bosons= dim G - dim H = 18 – 9 = 9 (?) Nambu-Goldstone Theorem # of the lightest pseudo-scalar mesons = 8 ! (140)(500)(550)<< (958) Why is so massive ? U A (1) Problem Anomaly Operator Equation! even in the chiral limit!

The Meson N.Grion (CHAOS) S. Schadamand (TAPS) T. Itabashi (RCNP) G. Chanfray (Th)

A condensed matter physics of vacuum (Y. Nambu; 1960)

Gauge invariance Axial gauge (chiral) symm. c.f. Bogoliubov, Anderson

Chiral Transition and the collective modes 0 c.f. Higgs particle in WSH model ; Higgs field Higgs particle

  What is the significance of the  in hadron physics? the softening of the  with increasing T and

T. Hatsuda and T. K., Phys. Rev. Lett. 55 (1985), 158 T dependence of the (`para’) sigma and (`para’) pion masses Large T

The significance of the  meson in low energy hadron physics and QCD 1. The pole in this mass range observed in the pi-pi S-matrix. As a compilation of the pole positions of the  obatined in the modern analyses: Significance of respecting chiral symmetry,unitarity and crossing symmetry to reproduce the phase shifts both in the  (s)- and , (t)-channels with a low mass  pole;(Igi and Hikasa(1999)). 2. Seen in decay processes from heavy particles; E. M. Aitala et al, Phys. Rev. Lett. (86), 770 (2001) 3. Responsible for the intermediate range attraction in the nuclear force. 4. Accounts for  I=1/2 enhancement in K ! 2  compared with K + !    . E.P. Shabalin (1988); T. Morozumi, C.S. Lim and I. Sanda (1990).  -N sigma term MeV (naively » 15 MeV) enhanced by the collectiveness of the  (.T.Hatsuda and T.K.(1990)) ; see the next slide.  6. The  of the chiral order parameter The Higgs particle in the WSG model

K. Igi and K. Hikasa, Phys. Rev. D59, (1999) The phase shifts in the sigma and rho channel in the N/D Method; resp. chiral symm., crossing symm and so on. No  but  in the t-channel and the  in the t-channel Both with the  in the s-

The poles of the S matrix in the complex mass plane for the sigma meson channel: complied in Z. Xiao and H.Z. Zheng (2001) G.Colangero, J. Gasser and Leutwyler (2001)

Issues with the low-mass  meson in QCD In the constituent quark model; the mass in the GeV region. Some mechanism needed to down the mass; (i) Color magnetic interaction between the di- quarks? (Jaffe; 1977: Alford-Jaffe;2000) (ii) The collectiveness of the scalar mode as the ps mode; a superposition of states. Chiral symmetry (NJL) (iii) The - molecule as suggested in scatt.

The Scalar mesons on the Lattice The Scalar Collaboration: S. Muroya,A. Nakamura,C. Nonaka,M. Sekiguchi, H. Wada,T. K. (Phys. Rev. D70, (2004)) ---- A full QCD calculation -----

Simulation parameters Lattice size : 8 3 × 16  = 4.8  = , , CP-PACS well established light meson with large lattice a = 0.197(2) fm,  c = (14) ( CP - PACS, Phys. Rev. D60(1999) ) Number of the Z 2 noise = 1000 Wilson Fermions & Plaquette gauge action Disconnected diagram

Propagator for  meson (2) Where Connected diagram Disconnected diagram - Vacuum contribution

m_m_ The meson masses

 meson propagators Connected Part & Disconnected Parts (  = )

Chiral Transition and the collective modes 0 c.f. Higgs particle in WSG model ; Higgs field Higgs particle

The poles of the S matrix in the complex mass plane for the sigma meson channel: complied in Z. Xiao and H.Z. Zheng (2001) G.Colangero, J. Gasser and Leutwyler (2001) Softening !

T. Hatsuda, H. Shimizu, T.K., Phys. Rev. Lett. 82 (1999), 2840 Spectral function in the  channel

The spectral enhancememnt in the nonlinear r ealization D. Jido, T. Hatsuda and T. K.,Phys. Rev. D63} (2000), (R). In the polar decomposition M=SU, In the heavy S-field limit, fixed ;

The renormalization of the wave function Due to the new vertex: C.f. Importance of the w.f. renormalization in other physics: U. Meissner, J. Oller and A. Wirzba, Ann. Phys. 297 (2002) 27 E. Kolomeitzev, N. Kaiser and W. Weise, P.R.L. 90 (2003) Deeply bound pionic nucleiw.f. renormalization E-dependece of opt. pot. c.f. Freidman and Gal (04)

D. Jido et al (2000) Softening of the in-medium pi-pi cross section In the non-linear realization

Chiral Lagrangian in the Medium Chiral Lagrangian: The pion field: Pion decay constants: In the vacuum: (  = ) Normalization of the  the pion mass:

In the medium: Thorsson-Wirzba Lagrangian (1996)

Then, The normalization of  and The pion mass: The quark condensate: ( ; isoeven scatt. Length )

Gell-Mann-Oakes-Renner relation in the nuclear medium holds up to : (GeV^(-1)) ρ ρ

- Scattering amplitude in the medium: Enhancement of the scattering amplitude in the sigma-meson channel! Owing to the wave-function renormalization as desribed by the pion-decay const. in the medium. A unified picture of the physics of the deeply bound pionic nuclei and the pi-pi scattering in I=J=0 channel of nuclei. (D. JIdo, T. Hatsuda and T.K. ;in preparation) (Jido, Hatsuda, T.K.(2000))

This ratio represents the net effect of nuclear matter on the interacting system. CB: Phys. Rev. Lett. 85, 5539 (2000). CHAOS:Phys. Rev. C60, (1999). P. Camerini et al, Phys. Rev. C64, (2001). (CHAOS coll.) A’=2 !208 CHAOS (1996)

C  ; A-dependence of  A Oset: Full model of the       process, standard nuclear effects discussed, P-wave pionic modes included and the  -meson dynamically generated. Oset and Vicente, PRC60(1999) Muhlich: Model based on Oset’s developed for the       and       reactions, better treatment of FSI of pions with the nucleus, no medium modifications. Muhlich et al., PLB595(2004)216 TAPS CHAOS     I=0     I=1 E~420 MeV  ~ 2/3  0     I~0     I=2 E~420 MeV  ~ 1/3  0

Differential cross sections of the reaction A( ,     )A' J.G. Messchendorp et al, Phys. Rev. Lett. 89 (2002), phase space TAPS experiment: L. Roca et al (2002) without softening

 A   o  o X  A   +/-  o X m(  o  o ) for isoscalar channel only: drops with increasing A consistent with isotropic angular distribution  o  o angular distribution E  = MeV J.G.Messchendorp et al., PRL 89, L. Roca, et a l., PLB 541 (2002) 77, priv. comm. preliminary    S.Schadmand

G.Chanfray concerned with the stability of Nuclear Matter Non-lin.(strong coupl.) v.s. Lin. Representation. Systematic analysis should be made.

(1405) and (deeply bound) Kaonic-nuclei (1405) and (deeply bound) Kaonic-nuclei (1405) another longstanding problem 3 quark or “ pentaquark ” ? or K-N bound state? if so, as M.Soyeur showed, Kaonic-nuclei may open new aspect of manybody problem with strangeness T. Suzuki, Y. Akaishi, T. Yamazaki Experimental and theoretical works are accelerated by  + effect! Discovery and Confirmation of the strange TriBaryons! or nona-quark states (Y. Maezawa)

   KN   Chiral dynamics of two  (1405) states D. Jido, J.A. Oller, E. Oset, A. Ramos & U.-G. Meissner, Nucl. Phys. A 725 (2003) 181 Experimental check ! Consistent to K-atom data ?(Y.Akaishi)

T. Suzuki H. Bhang G. Franklin K. Gomikawa R.S. Hayano T. Hayashi K. Ishikawa S. Ishimoto K. Itahashi M. Iwasaki T. Katayama Y. Kondo Y. Matsuda T. Nakamura S. Okada H. Outa B. Quinn M. Sato M. Shindo H. So P. Strasser T. Sugimoto K. Suzuki S. Suzuki D. Tomono A.M. Vinodkumar E. Widmann T. Yamazaki T. Yoneyama Discovery of S 0 (3115) in 4 He(stopped K -,p)K - pnn Phys. Lett. B597 (2004) 263 Press release on Aug. 24, 

Evidence for K - ppn Oct.16, 2003 M. Iwasaki et al. M. Iwasaki T. Suzuki H. Bhang G. Franklin K. Gomikawa R.S. Hayano T. Hayashi K. Ishikawa S. Ishimoto K. Itahashi T. Katayama Y. Kondo Y. Matsuda T. Nakamura S. Okada H. Outa B. Quinn M. Sato M. Shindo H. So T. Sugimoto P. Strasser K. Suzuki S. Suzuki D. Tomono A.M. Vinodkumar E. Widmann T. Yamazaki T. Yoneyama nucl-ex/ from 4 He(stopped K -,n)

A. Dote et al., Phys. Rev. C70 (2004) NN LS potential effect 3 P 2 pairing N(0s) 2 (0p) K _ N(0s) 3 K _ T=1 T=0 T=1 T=0 T=1 T=0 T=2

Problems Quite larger binding energy than expected by brave Akaishi-Yamazaki! relativistic effects/precursor of Kaon condensation (Y.Akaishi) Consistency with experiment for larger nuclei O16 by T. Kishimoto as well as Kaonic atom (S. Hirenzaki, T. Ishiwatari) Single kaon can take care of only a few nucleons but not, say 15. (Akaishi-Yamazaki) NN ? 940x =3135 (M. Oka, M. Vicent-Vacas) rejected experimentally ?

Energy Spectrum (In-flight K,n) P K = 930 MeV/c bound region [ T.Kishimoto et al., Prog. Theor. Phys. Suppl. 149 (2003) 264 ] [ Fig. taken from the seminar by Dr.Hayakawa ] (In-flight K,p) P K = 976 MeV/c

Worth further study S. Piano (FINUDA) invariant mass analysis of three bodies observed a PP deeply bound system T.Yamazaki Possible Heavy-Ion production (Quark-Gluon Bound (QGB) systems) and conjectures on high density matter with kaon (condensation?) Intriguing to re-analyses strange nuggets with chiral symmetry taken into account; M.Rho, S. Yasui

Concluding Remarks Certainly, the field is rich in physics, promising and involves pleasant experiment- theory people collaboration and discussions. Fun! The continuation of the work shop originated from Chiral02 (YITP) is planned to be held in Europe. Also, there will be a YKIS 2006, entitled `Exotic Hadrons and Hadronic Matter ’, YITP, Kyoto, Oct.30 – Nov.17, 2006 Get together again and again! Thank you!