1 Numerical geometry of non-rigid shapes Projects Quasi-isometries Project 1 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry.

Slides:



Advertisements
Similar presentations
Differential geometry I
Advertisements

Spectral methods 1 © Alexander & Michael Bronstein,
Multiple Shape Correspondence by Dynamic Programming Yusuf Sahillioğlu 1 and Yücel Yemez 2 Pacific Graphics 2014 Computer Eng. Depts, 1, 2, Turkey.
Topology-Invariant Similarity and Diffusion Geometry
1 Numerical Geometry of Non-Rigid Shapes Diffusion Geometry Diffusion geometry © Alexander & Michael Bronstein, © Michael Bronstein, 2010 tosca.cs.technion.ac.il/book.
Discrete Geometry Tutorial 2 1
Isometry-Invariant Similarity
Discrete geometry Lecture 2 1 © Alexander & Michael Bronstein
1 Numerical geometry of non-rigid shapes Geometry Numerical geometry of non-rigid shapes Shortest path problems Alexander Bronstein, Michael Bronstein,
1 Numerical geometry of non-rigid shapes Consistent approximation of geodesics in graphs Consistent approximation of geodesics in graphs Tutorial 3 © Alexander.
Shape reconstruction and inverse problems
Einführung in die Geometrie Introduction to geometry
Invariant correspondence
1 Processing & Analysis of Geometric Shapes Shortest path problems Shortest path problems The discrete way © Alexander & Michael Bronstein, ©
1 Michael Bronstein Shapes as metric spaces: deformation-invariant similarity Michael Bronstein Computational metric geometry: an old new tool in image.
1 Michael Bronstein Computational metric geometry Computational metric geometry Michael Bronstein Department of Computer Science Technion – Israel Institute.
1 Numerical geometry of non-rigid shapes Partial similarity Partial similarity © Alexander & Michael Bronstein, © Michael Bronstein, 2010 tosca.cs.technion.ac.il/book.
1 Processing & Analysis of Geometric Shapes Introduction Processing and Analysis of Geometric Shapes Department of Electrical Engineering – Technion Spring.
Multidimensional scaling
Scale Normalization for Isometric Shape Matching Yusuf Sahillioğlu and Yücel Yemez Computer Eng. Dept., Koç University, Istanbul, Turkey.
Isometry invariant similarity
1 Michael Bronstein 3D face recognition Face recognition: New technologies, new challenges Michael M. Bronstein.
1 Numerical geometry of non-rigid shapes Lecture I – Introduction Numerical geometry of shapes Lecture I – Introduction non-rigid Michael Bronstein.
Spectral embedding Lecture 6 1 © Alexander & Michael Bronstein
Fast marching methods Lecture 3 1 © Alexander & Michael Bronstein
Numerical geometry of non-rigid shapes
Numerical geometry of objects
1 Bronstein 2 and Kimmel Extrinsic and intrinsic similarity of nonrigid shapes Michael M. Bronstein Department of Computer Science Technion – Israel Institute.
Lecture IV – Invariant Correspondence
1 Numerical geometry of non-rigid shapes Mathematical background Mathematical background Tutorial 1 © Maks Ovsjanikov, Alex & Michael Bronstein tosca.cs.technion.ac.il/book.
Correspondence & Symmetry
1 Numerical geometry of non-rigid shapes Partial similarity Partial Similarity Alexander Bronstein, Michael Bronstein © 2008 All rights reserved. Web:
1 Numerical geometry of non-rigid shapes Spectral Methods Tutorial. Spectral Methods Tutorial 6 © Maks Ovsjanikov tosca.cs.technion.ac.il/book Numerical.
1 Numerical geometry of non-rigid shapes Lecture II – Numerical Tools Numerical geometry of shapes Lecture II – Numerical Tools non-rigid Alex Bronstein.
Spectral Embedding Alexander Bronstein, Michael Bronstein
Feature-based methods
Differential geometry II
Numerical geometry of non-rigid shapes
1 Numerical geometry of non-rigid shapes In the Rigid Kingdom In the Rigid Kingdom Lecture 4 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
1 Numerical geometry of non-rigid shapes A journey to non-rigid world objects Invariant correspondence and shape synthesis non-rigid Alexander Bronstein.
1 Bronstein, Bronstein, and Kimmel Joint extrinsic and intrinsic similarity of non-rigid shapes Rock, paper, and scissors Joint extrinsic and intrinsic.
Invariant Correspondence
1 Regularized partial similarity of shapes NORDIA – CVPR 2008 Not only size matters: Regularized partial similarity of shapes Alexander Bronstein, Michael.
1 Numerical geometry of non-rigid shapes Spectral embedding Conclusions I hope that posterity will judge me kindly, not only as to the things which I have.
1 Numerical geometry of non-rigid shapes A journey to non-rigid world objects Numerical methods non-rigid Alexander Bronstein Michael Bronstein Numerical.
Non-Euclidean Embedding
1 Numerical geometry of non-rigid shapes Introduction Numerical geometry of non-rigid shapes Introduction Alexander Bronstein, Michael Bronstein, Ron Kimmel.
1 Numerical geometry of non-rigid shapes Numerical Geometry Numerical geometry of non-rigid shapes Numerical geometry Alexander Bronstein, Michael Bronstein,
Numerical geometry of non-rigid shapes
Paretian similarity for partial comparison of non-rigid objects
1 Bronstein 2 & Kimmel An isometric model for facial animation and beyond AMDO, Puerto de Andratx, 2006 An isometric model for facial animation and beyond.
1 Numerical Geometry of Non-Rigid Shapes Invariant shape similarity Invariant shape similarity © Alexander & Michael Bronstein, © Michael Bronstein,
1 Numerical geometry of non-rigid shapes Non-Euclidean Embedding Non-Euclidean Embedding Lecture 6 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
1 Numerical geometry of non-rigid shapes Expression-invariant face recognition Expression-invariant face recognition Lecture 8 © Alexander & Michael Bronstein.
1 Numerical geometry of non-rigid shapes Three-Dimensional Face Recognition Three Dimensional Face Recognition “And in stature he is small, chest broad,
1 Michael M. Bronstein Partial similarity of objects 17 December 2006 Partial similarity of objects, or how to compare a centaur to a horse Michael M.
1 Bronstein 2 & Kimmel Matching 2D articulated shapes using GMDS AMDO, Puerto de Andratx, 2006 Matching 2D articulated shapes using Generalized Multidimensional.
1 Numerical geometry of non-rigid shapes A journey to non-rigid world objects Introduction non-rigid Alexander Bronstein Michael Bronstein Numerical geometry.
1 M. Bronstein Multigrid multidimensional scaling Multigrid Multidimensional Scaling Michael M. Bronstein Department of Computer Science Technion – Israel.
1 Numerical geometry of non-rigid shapes Non-rigid correspondence Numerical geometry of non-rigid shapes Non-rigid correspondence Alexander Bronstein,
1 Numerical geometry of non-rigid shapes Nonrigid Correspondence & Calculus of Shapes Non-Rigid Correspondence and Calculus of Shapes Of bodies changed.
1 M. Bronstein | Expression-invariant representation of faces and its applications for face recognition Expression-invariant representation of faces and.
1 Numerical geometry of non-rigid shapes Shortest path problems Shortest path problems Lecture 2 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
Coarse-to-Fine Combinatorial Matching for Dense Isometric Shape Correspondence Yusuf Sahillioğlu and Yücel Yemez Computer Eng. Dept., Koç University, Istanbul,
Expression-invariant Face Recognition using Geodesic Distance Isometries Kerry Widder A Review of ‘Robust expression-invariant face recognition from partially.
Extended Grassfire Transform on Medial Axes of 2D Shapes
Roee Litman, Alexander Bronstein, Michael Bronstein
CENG 789 – Digital Geometry Processing 04- Distances, Descriptors and Sampling on Meshes Asst. Prof. Yusuf Sahillioğlu Computer Eng. Dept,, Turkey.
Morphing and Shape Processing
Spectral Methods Tutorial 6 1 © Maks Ovsjanikov
Presentation transcript:

1 Numerical geometry of non-rigid shapes Projects Quasi-isometries Project 1 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009

2 Numerical geometry of non-rigid shapes Projects Relaxation of isometry We have seen two relaxations of the notion of isometry Relative distortion (bi-Lipschitz map): Absolute distortion (almost-isometry): Tool to quantify shape dissimilarity Can be computed using generalization of MDS

3 Numerical geometry of non-rigid shapes Projects Quasi-isometries Another relaxation: quasi-isometry Goal: compute shape dissimilarity in the sense of quasi-isometry Multi-criteria trade-off Set-valued distance

4 Numerical geometry of non-rigid shapes Projects Shape matching under the influence of noise Project 2 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009

5 Numerical geometry of non-rigid shapes Projects Sensitivity to noise Comparison of intrinsic geometries = invariant shape similarity Goal: study how intrinsic geometry of a shape is sensitive to noise Perturbation of vertices Perturbation of triangulation & topology How do they influence geodesic distances? How are different stress functions sensitive to noise?

6 Numerical geometry of non-rigid shapes Projects Intersection-free as-isometric-as-possible shape morphing Project 3 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009

7 Numerical geometry of non-rigid shapes Projects Intersection-free as-isometric-as-possible morph Given two nearly isometric shapes and find a continuous family of as isometric as possible shapes. Define a Riemannian metric on space of shapes quantifying local distortion Find geodesic connecting two shapes = minimum distortion morph Caveat: intermediate shapes might self-intersect On the other hand: there exists parametrizations guaranteeing intersection-free morphing Goal: combine two approaches in simplified 2D setting

8 Numerical geometry of non-rigid shapes Projects Sensitivity of Laplace-Beltrami operator to boundary conditions Project 4 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009