___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Assignment Problem Linear Programming
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Assignment Problem Assignment „1 to 1“ employeesjobs machinesjobs projectsmanagers service teams cars doctors night shifts Objective: maximize the effect of assignment
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Objective: minimize total distance necessary for all movements Assignment Problem Excavating shafts for basements (Michle, Prosek, Radlice, Trója) Each excavation takes 5 days 4 excavators stored in 4 separated garages (everyday‘s movement) One excavator to one destination Distances between garages and destinations
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem MichleProsekRadliceTrója Garage Garage Garage Garage Distances
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem MichleProsekRadliceTrója Garage 1 x 11 x 12 x 13 x 14 Garage 2 x 21 x 22 x 23 x 24 Garage 3 x 31 x 32 x 33 x 34 Garage 4 x 41 x 42 x 43 x 44 Decision variables
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Decision variables x ij = 1 if the excavator from the garage i goes to the destination j 0 otherwise Binary variable
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Optimal solution MichleProsekRadliceTrója Garage Garage Garage Garage
Linear Programming ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Applications Example – Prague Build, Inc. Assignment Problem Optimal solution 1 movement MichleProsekRadliceTrója Garage 1 5 km --- Garage km Garage km - Garage km -- Minimal total distance 320 km
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
___________________________________________________________________________ Operations Research Jan Fábry Network Models
___________________________________________________________________________ Operations Research Jan Fábry Nodes Arcs j jj j i j jj j iUNDIRECTEDDIRECTED UNDIRECTED NETWORK DIRECTED NETWORK Network
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Path Sequence of arcs in which the initial node of each arc is identical with the terminal node of the preceding arc
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Path Open Path 1 6
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Circuit (Cycle) Path starting and ending in the same node (closed path)
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Connected Network There is a path connecting every pair of nodes in the network
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Unconnected Network
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Tree Connected network without any circuit. Exactly 6 arcs (n-1) Removing 1 arc Unconnected network Adding 1 arc Circuit in the network
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Tree STAR „CHRISTMAS“ TREE SNAKE
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Spanning Tree Tree including all the nodes from the original network
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Evaluated Network - distance - time - cost - capacity ValuesArcs Nodes j i ii i j i ii i y ij yiyiyiyi yjyjyjyj
Network Models ___________________________________________________________________________ Operations Research Jan Fábry Basic Network Applications Project Management Shortest Path Problem Traveling Salesperson Problem (TSP) Minimal Spanning Tree Critical Path Method (CPM) Maximum Flow Problem Program Evaluation Review Technique (PERT)
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem Network Models
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem Shortest path between 2 nodes
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Shortest Path Problem Shortest Paths Between All Pairs of Nodes
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Traveling Salesperson Problem Network Models
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Traveling Salesperson Problem (TSP) Home city Shortest tour 110 km
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Network Models
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Example - Exhibition Exhibition area with 9 locations that need electricity power Use cable for extensions Price of cable = 10 CZK / 1 m Objective: minimize the cost of all the extensions
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Example - Exhibition Power
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Minimal Spanning Tree Example - Exhibition Power Optimum 490 m CZK
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem Input Output Capacited network Gas Fluid Traffic Information People Source Sink
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem j i i j UNDIRECTED ARC DIRECTED ARC Flow Flow Capacity
Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Maximum Flow Problem Mathematical Model Flow through each arc Capacity of the arc Quantity flowing out = Quantity flowing into (except the source and the sink) Total flow into the source = 0 Total flow out of the sink = 0 Total flow out of the source = Total flow into the sink
Maximum Flow Problem Example – White Lake City The city is situated on the edge of a small lake To minimize disruptive effects of possible flood Reconstruction of drain system 2 alternatives - Northern Channel & Southern Channel Objective: maximizing the quantity of water being pumped in one hour Network Models ___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Lake Reservoir Northern Channel Southern Channel
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Northern Channel Optimum m 3
___________________________________________________________________________ ___________________________________________________________________________ Operations Research Jan Fábry Operations Research Jan Fábry Southern Channel Optimum m