STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.

Slides:



Advertisements
Similar presentations
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Solar flares and accelerated particles
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
TRACE Downflows and Energy Release Ayumi ASAI Kwasan Observatory, Kyoto University Magnetic Reconnection and the Dynamic Sun 9 September, Andrews.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Imaging with subcollimator 1. Dec 6, 2006 white light flare Hinode/SOT image during the main HXR peak! SOT resolution.
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Advances in Plasma Astrophysics, Giardini-Naxos, 6-10 Sept D Modeling of Solar Flaring Loops New Interactive Solar Flare Modeling and Advanced Radio.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
RHESSI-Nessie II WG 3: “From sites of radiation to particle sources” Three sub-groups, to have appointed times in the program Specific educational questions.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Relationships between flares and CMEs H.S. Hudson Space Sciences Lab, UC Berkeley.
Modeling the Neupert Effect in Flares: Connecting Theory and Observation Andrea Egan Advisors: Dr. Trae Winter and Dr. Kathy Reeves.
Hard X-ray sources in the solar corona H.S. Hudson Space Sciences Lab, UC Berkeley.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Electron Propagation in RHESSI flares Markus J. Aschwanden (LMSAL) 5 th General RHESSI Workshop, Locarno, Switzerland, 7-11 June 2005 Group 1 : Electron.
1 Statistical determination of chromospheric density structure using RHESSI flares Pascal Saint-Hilaire Space Sciences Lab, UC Berkeley RHESSI Workshop.
Inversions of Flaring Radio Emissions. Gregory D. Fleishman.
Coronal Hard X-rays Come of Age H. S. Hudson SSL, UC Berkeley.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 6. Transport of Radiation 14 October 2008.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Magnetic Reconnection Rate and RHESSI Hard X-Ray Imaging Spectroscopy of Well Resolved X-class Flares Yan Xu, Ju Jing, Wenda Cao, and Haimin Wang.
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
RHESSI and global models of flares and CMEs: What is the status of the implosion conjecture? H.S. Hudson Space Sciences Lab, UC Berkeley.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Compelling Theoretical Issues Driven by Observations / Theoretical Wish List of Observations WG5 Hamish Reid.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Evidence of Chromospheric Evaporation in a Neupert-type Flare NING Zongjun Purple Mountain Observatory, China.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina.
G. Nita 1 G. Fleishman 1, A. Kuznetsov 2, E. Kontar 3, D. Gary 1 1 New Jersey Institute of Technology, Physics, Newark- NJ, USA. 2 Institute of Solar-Terrestrial.
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
Two Years of NoRH and RHESSI Observations: What Have We Learned
RHESSI and H study of the X4 Flare of 3 Nov 2003
RHESSI Spectral Analysis of the 1N/M1.9 flare of 20 October 2003
TRACE Downflows and Energy Release
Origin of > 100 GHz radio emission
Flare-Associated Oscillations Observed with NoRH
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Downflow as a Reconnection Outflow
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015

Introduction A science question: where does the electron acceleration occur in solar flares? Does it happen in dense or tenuous loops? If the acceleration region is dense, it must be detectable in HXR via coronal thick-target emission. Do dense coronal loops exist?

Dense Flaring Loops Dense post-flare loops (e.g., Neupert 1971; Marsh & Hurford 1980; Feldman et al. 1982) Dense cold flaring loop in a small flare (White et al. 1992) Dense hot flaring loops (Veronig & Brown 2004) Dense cold flaring loop in a large flare (Bastian, Fleishman, Gary 2007) A subset of dense coronal flares (Xu et al. 2008)

Bastian et al. 2007: n 0 ~ cm -3 Acceleration region; turbulence-mediated transport of fast electrons

Veronig & Brown 2004

Implications (Xu et al. 2008)

Xu et al. 2008

This study OVSA 5.6 GHz

Work Flow

Compare with 21 May 2004 M2.6 flare

3D Model (our event: ) SoHO/MDIRHESSI keV OVSA 5.6 GHz B 0 = 140 G Density; thermal Density; nonthermal

Model-to-data Comparison: Images X-ray model on RHESSI keV OVSA image at 5.6 GHz on microwave model X-ray model on microwave model on RHESSI keV

Model-to-data Comparison: Spectra

Compare with 21 May 2004 M2.6 flare

Summary of the 3D Model

Conclusions