New Results from MiniBooNE: A search for ν e appearance at Δm 2 ~ 1 eV 2 Georgia Karagiorgi, MIT Results and Perspectives in Particle Physics Les 23 rd.

Slides:



Advertisements
Similar presentations
Neutrinos from kaon decay in MiniBooNE Kendall Mahn Columbia University MiniBooNE beamline overview Kaon flux predictions Kaon measurements in MiniBooNE.
Advertisements

1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Measurement of the off-axis NuMI beam with MiniBooNE Zelimir Djurcic Columbia University Zelimir Djurcic Columbia University Outline of this Presentation.
05/31/2007Teppei Katori, Indiana University, NuInt '07 1 Charged Current Interaction measurements in MiniBooNE hep-ex/XXX Teppei Katori for the MiniBooNE.
03/07/2007Teppei Katori, Indiana University, PMN07 1 Neutrino Interaction measurements in MiniBooNE hep-ex/ Teppei Katori and D. Chris Cox for.
Atmospheric Neutrinos Barry Barish Bari, Bologna, Boston, Caltech, Drexel, Indiana, Frascati, Gran Sasso, L’Aquila, Lecce, Michigan, Napoli, Pisa, Roma.
P AUL N IENABER S AINT M ARY ’ S U NIVERSITY OF M INNESOTA FOR THE M INI B OO NE C OLLABORATION J ULY DPF2009.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
H. Ray, University of Florida1 MINIBOONE  e e .
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
Miami 2010 MINIBOONE  e e  2008! H. Ray, University of Florida.
LSND/MiniBooNE Follow-up Experiment with DAEdALUS W.C. Louis Los Alamos National Laboratory August 6, 2010.
Neutrino Physics - Lecture 7 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
A Search for   e Oscillation with MiniBooNE Hai-Jun Yang University of Michigan, Ann Arbor (on behalf of MiniBooNE Collaboration ) The 6 th KEK Topical.
First Results from MiniBooNE May 29, 2007 William Louis Introduction The Neutrino Beam Events in the MiniBooNE Detector Data Analysis Initial Results Future.
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
1 Updated Anti-neutrino Oscillation Results from MiniBooNE Byron Roe University of Michigan For the MiniBooNE Collaboration.
MiniBooNE: Status and Prospects Eric Prebys, FNAL/BooNE Collaboration.
MiniBooNE Update Since Last PAC Meeting (Nov 2007) Steve Brice (FNAL) PAC Meeting 27 March 2008.
Atmospheric Neutrino Oscillations in Soudan 2
MiniBooNE Results & Future Experiments MiniBooNE Introduction Neutrino Oscillation Results MiniBooNE NuMI Data Antineutrino Oscillation Results Future.
Physics Analysis with Advanced Data Mining Techniques Hai-Jun Yang University of Michigan, Ann Arbor CCAST Workshop Beijing, November 6-10, 2006.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Results and Implications from MiniBooNE LLWI, 25 Feb 2011 Warren Huelsnitz, LANL
Page 1Steve Brice FNALNeutrino 2004 June 15 MiniBooNE Steve Brice Fermilab Overview MiniBooNE Beam MiniBooNE Detector Neutrino Analyses Summary.
MiniBooNE and the Hunt for Low Mass Sterile Neutrinos 1H. Ray, University of Florida.
Neutrino Oscillation Results from MiniBooNE Joe Grange University of Florida.
05/09/2011Teppei Katori, MIT1 Teppei Katori Massachusetts Institute of Technology Phenomenology 2011 symposium (Pheno11), Madison, WI, May 9, 2011 Test.
A Decade Later: Are We Any Closer to Resolving the LSND Puzzle? BNL Seminar September 23, 2010 Richard Van de Water, LANL, P-25 P-25 Subatomic Physics.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
MiniBooNE Michel Sorel (Valencia U.) for the MiniBooNE Collaboration TAUP Conference September 2005 Zaragoza (Spain)
June 10 & 11, 2002Jonathan Link, Columbia Fermilab Users Meeting The Physics and Status of MiniBooNE Jonathan Link Columbia University Fermilab Annual.
1 MiniBooNE Update and Extension Request Richard Van de Water and Steve Brice for the MiniBooNE Collaboration Nov 2, 2007.
Preliminary Results from the MINER A Experiment Deborah Harris Fermilab on behalf of the MINERvA Collaboration.
MiniBooNE Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
MiniBooNE Cross Section Results H. Ray, University of Florida ICHEP Interactions of the future!
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Recent results from SciBooNE and MiniBooNE experiments Žarko Pavlović Los Alamos National Laboratory Rencontres de Moriond 18 March 2011.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
A Letter of Intent to Build a MiniBooNE Near Detector: BooNE W.C. Louis & G.B. Mills, FNAL PAC, November 13, 2009 Louis BooNE Physics Goals MiniBooNE Appearance.
Mini Overview Peter Kasper NBI The MiniBooNE Collaboration University of Alabama, Tuscaloosa Bucknell University, Lewisburg University of California,
Event Reconstruction and Particle Identification Yong LIU 刘 永 The University of Alabama PRC-US workshop Beijing, June 11-18, 2006 MiniBNE On Behalf of.
Search for Sterile Neutrino Oscillations with MiniBooNE
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
MiniBooNE MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation.
First MiniBooNE ν e Appearance Results Georgia Karagiorgi, MIT FNAL – December 11, 2008.
Status of MiniBooNE Short Baseline Neutrino Oscillation Experiment Jonathan Link Columbia University International Conference on Flavor Physics October.
Outline: IntroJanet Event Rates Particle IdBill Backgrounds and signal Status of the first MiniBooNE Neutrino Oscillation Analysis Janet Conrad & Bill.
Gordon McGregor March 5-12, 2005 Moriond EW, La Thuile. MiniBooNE: Current Status.
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
Imperial College London Morgan O. Wascko Neutrino & Antineutrino Oscillation Searches at MiniBooNE Morgan O. Wascko Imperial College London
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
1 MiniBooNE Oscillation Update Mike Shaevitz Columbia University XII International Conference on “Neutrino Telescopes” March 7, 2007.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Precision Measurement of Muon Neutrino Disappearance with T2K Alex Himmel Duke University for the The T2K Collaboration 37 th International Conference.
MINERνA Overview  MINERνA is studying neutrino interactions in unprecedented detail on a variety of different nuclei  Low Energy (LE) Beam Goals: t Study.
New Results from MINOS Matthew Strait University of Minnesota for the MINOS collaboration Phenomenology 2010 Symposium 11 May 2010.
R. Tayloe, Indiana University CPT '07 1 Neutrino Oscillations and and Lorentz Violation Results from MiniBooNE Outline: - LSND - signal for oscillations.
R. Tayloe, Indiana University Lepton-Photon '07 1 Neutrino Oscillation Results from MiniBooNE Outline: - motivation, strategy - experiment - analysis -
EPS HEP 2007 M. Sorel – IFIC (Valencia U. & CSIC)1 MiniBooNE, Part 2: First Results of the Muon-To-Electron Neutrino Oscillation Search M. Sorel (IFIC.
R. Tayloe, Indiana U. DNP06 1 A Search for  → e oscillations with MiniBooNE MiniBooNE does not yet have a result for the  → e oscillation search. The.
Neutral Current Interactions in MINOS Alexandre Sousa, University of Oxford for the MINOS Collaboration Neutrino Events in MINOS Neutrino interactions.
MinibooNE Oscillation Results and Implications Mike Shaevitz Columbia University for the MiniBooNE Collaboration.
First Anti-neutrino results!
Impact of neutrino interaction uncertainties in T2K
Presentation transcript:

New Results from MiniBooNE: A search for ν e appearance at Δm 2 ~ 1 eV 2 Georgia Karagiorgi, MIT Results and Perspectives in Particle Physics Les 23 rd Rencontres de Physique de la Vallée d'Aoste LaThuile, Aosta Valley, Italy March 1-7, 2008

Another Δm 2 ? LSND experiment: P(ν μ  ν e ) = sin 2 (2θ) sin 2 ( ) = ± ± % 1.27 L Δm 2 E observed excess: 87.9 ± 22.4 ± 6.0 anti-ν e events (3.8σ) 2-neutrino mixing with: Detected anti- ν e from stopped pion source: π +  μ +  ν μ Possible interpretation: Best fit: sin 2 (2θ) = 0.003, Δm 2 = 1.2 eV 2 ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT2 [arXiv:hep-ex/ ]

3 Why not? 3-neutrino mixing scheme established by atmospheric and solar experiments cannot accommodate for the LSND oscillation interpretation ________________________________________________________________ Only 2 independent Δm 2 : 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT3

800 ton mineral oil Cherenkov detector 12 m in diameter (450 ton fiducial volume) lined with 1280 inner PMT’s, and 240 outer veto PMT’s [arXiv: [hep-ex], Nucl. Instr. Meth. A599 (2009) 28-46] The MiniBooNE Experiment: ________________________________________________________________ Designed to test: 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT4 P(ν μ  ν e ) = sin 2 (2θ) sin 2 ( ) ≈ 0.25 % 1.27 L Δm 2 E Requirement: Place detector to preserve LSND L/E  MiniBooNE: 500 m / 800 MeV LSND: 30 m / 50 MeV [Different detection method and systematics]

5 The MiniBooNE Experiment: Signal ν e charged-current quasi-elastic events ν e + n → e - + p Dominant type of interaction ν μ charged-current quasi-elastic events ν μ + n → μ - + p e μ Event signatures: Looking for ν e signal in ν μ dominated beam… ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT5

6 The analysis… A blind analysis chain was implemented… Beam Flux Prediction Cross Section Model Optical Model Event Reconstruction Particle Identification Simultaneous Fit to μ and e events Start with a Geant 4 flux prediction for the spectrum from  and K produced at the target Use track-based event reconstruction Predict interactions using the Nuance event generator Pass final state particles to Geant 3 to model particle and light propagation in the tank Fit reconstructed energy spectrum for oscillations Use hit topology and timing to identify electron- like or muon-like Cherenkov rings and corresponding charged current neutrino interactions νν ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT6 Track-based analysis (TBA) [but also boosted-decision-tree (BDT) analysis] [arXiv: [hep-ex], accepted by Phys. Rev. Lett.] [arXiv: [hep-ex], Phys. Rev. Lett. 98, (2007)]

A glimpse of hope… MiniBooNE has searched for ν μ  ν e oscillations at Δm 2 ~ 1 eV 2 Observed no excess consistent with the LSND two- neutrino oscillation… …and therefore ruled out LSND ν μ →ν e oscillation interpretation: Assumptions: 2-ν oscillation, with standard L/E dependence  no CP or CPT violation ________________________________________________________________ ν μ  ν e signal region ν e data vs. prediction 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT [arXiv: [hep-ex], Phys. Rev. Lett. 98, (2007)] (stopped μ + ) (reactor)

8 But another mystery… But observed unexpected excess of events at low energy… ________________________________________________________________ Interpretations include: CP violation with 2 sterile ν Extra dimensions New particles CPT/Lorentz violation New interactions VSBL ν e disappearance low energy excess region ± 43.4 excess events (3.0σ) 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT8 [Maltoni, Schwetz, hep-ph/ , G.K., et al, hep-ph/ ] [Harvey, Hill, Hill, hep-ph/ ] [Nelson, Walsh, PRD 77, (2008)] [Katori, Kostelecky, Tayloe, PRD 74, (2006)] [Pas, Pakvasa, Weiler, hep-ph/ ] [arXiv: [hep-ex], accepted by Phys. Rev. Lett.] predictions for MiniBooNE ν μ  ν e signal _ _ [Giunti, Laveder, PRD 77, (2008)] [arXiv: [hep-ex], Phys. Rev. Lett. 98, (2007)]

Addressing the MiniBooNE and LSND anomalies ________________________________________________________________ by switching horn polarity, we focus negatively charged mesons, yielding an anti-ν μ beam 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT9 Through antineutrino MiniBooNE: ν e appearance search _ First antineutrino results (this talk), for 3.4e20 protons on target (POT)! (new results coming soon, for 5.0e20 POT) Antineutrino dataset is used to address both CP/CPT violating ν μ  ν e oscillations, and MiniBooNE low energy excess interpretations How do we get ν e ? _ First look at antineutrinos

Background composition for ν e appearance search (3.4e20 POT): N events MeV MeV intrinsic ν e from π ± /μ ± from K ±, K other ν e mis-id ν μ CCQE NC π Δ radiative Dirt other ν μ Total bkgd LSND best fit LSND best-fit ν μ  ν e (Δm 2, sin 2 2θ)=(1.2,0.003) __ [note: statistical-only errors shown] Looking for ν e signal… _________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT10 (only anti-ν μ assumed to oscillate)

11 Dominant background (at low energy) ν μ neutral-current interactions with photon(s) in the final state For example, NC π 0 : ν μ + n/p → n/p + π 0 + ν μ π 0 → γγ …“γ” looks like “e” in a Cherenkov detector π0π0 γ (shower) ________________________________________________________________ [note: statistical-only errors shown] LSND best-fit ν μ  ν e (Δm 2, sin 2 2θ)=(1.2,0.003) __ _ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT11 Looking for ν e signal… _

12 MiniBooNE ν μ  ν e sensitivity (3.4e20 POT) ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT12 __ KARMEN: ν μ  ν e search Compatibility with LSND at 64% CL __ [KARMEN: hep-ex/ , Phys. Rev. D 65, (2002)] [KARMEN-LSND compatibility: hep-ex/ , Phys. Rev. D 66, (2002)]

Do ν μ  ν e ? ν e data vs. background distribution (3.4e20 POT): χ 2 null (dof) = 24.5 (19) χ 2 -probability = 17.7% No significant excess observed at both low and high energy! ________________________________________________________________ low energy region signal region__ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT13 χ 2 best-fit (dof) = 18.2 (17) χ 2 -probability = 37.8% MiniBooNE best-fit: (Δm 2, sin 2 2θ) = (4.4 eV 2, 0.004) First antineutrino result!

14 With 3.4e20 POT, MiniBooNE places a limit to ν μ  ν e oscillations: ________________________________________________________________ region excluded by MiniBooNE Do ν μ  ν e ? __ __ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT Joint KARMEN + LSND 90%CL allowed region region excluded by MiniBooNE 14 KARMEN: ν μ  ν e search __ 90 % CL 3σ CL 5σ CL BDT, 90% CL

What about the low energy excess? E ν QE range (MeV) ν mode ν mode (3.4e20 POT)(6.5e20 POT) Data61544 MC ± sys+stat (constr.)61.5 ± ± 43.4 Excess (σ)-0.5 ± 11.7 (-0.04)128.8 ± 43.4 (3.0) Data61408 MC ± sys+stat (constr.)57.8 ± ± 35.7 Excess (σ)3.2 ± 10.0 (0.3)22.1 ± 35.7 (0.6) [hep-ex/ ] ________________________________________________________________ How consistent are excesses in neutrino and antineutrino mode under different underlying hypotheses as the source of the low energy excess in neutrino mode? Possibilities: Background & New Physics 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT15 _ (same binning as in neutrino mode)

16 What about the low energy excess? ________________________________________________________________ Suggested hypotheses: Include processes contributing either a single-electron or a single-gamma [Harvey, Hill, and Hill, hep-ph ] ‘‘New’’ physics? E.g. Anomaly-mediated photon production? 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT16 Assumed to contribute equally for neutrinos and antineutrinos Standard Model, but odd…

17 What about the low energy excess? ________________________________________________________________ Suggested hypotheses: Include processes contributing either a single-electron or a single-gamma Or background? E.g. Misestimated π 0 ? To account for ν mode excess, π 0 background would have to be misestimated by a factor of 2... Unlikely, since the π 0 rate is measured to 5%. [ Phys. Lett. B664, 41 (2008) ] ν e data vs. prediction (ν mode) 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT17 π 0 : most dominant background at low energy

18 What about the low energy excess? ________________________________________________________________ In testing these hypotheses, the excess is assumed to scale from neutrinos to antineutrinos as follows: The same ν,ν NC cross section(e.g. HHH axial anomaly [hep-ph/ ] ) The same cross section ratio as NC π 0 background (cross section is different for ν, ν) With POT(e.g. K0L-induced events) With Background CC cross section ratio Low-E Kaons Neutrinos only (no antineutrinos)(neutrino induced interaction) Flux and protons on target (POT) in neutrino and antineutrino mode were taken into account in the scaling. _ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT18 _

19 What about the low energy excess? ________________________________________________________________ Same ν and ν NC cross-section (HHH axial anomaly), POT scaled, Low-E Kaon scaled: disfavored as an explanation of the MiniBooNE low energy excess! The most preferred model is that where the low-energy excess comes from neutrinos in the beam (no contribution from anti-neutrinos). Stat OnlyCorrelated SystUncorrelated Syst Same ν,ν NC 0.1%0.1%6.7% NC π 0 scaled3.6%6.4%21.5% POT scaled0.0%0.0%1.8% Bkgd scaled2.7%4.7%19.2% CC scaled2.9%5.2%19.9% Low-E Kaons0.1%0.1%5.9% ν scaled38.4%51.4%58.0% Maximum χ 2 probability from fits to ν and ν excesses in MeV range Preliminary _ _ (“lower limit”) (“upper limit”) 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT _ 19

________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT20 Current status & prospects: We have performed a blind analysis to ν μ  ν e oscillations: ν e data in agreement with MonteCarlo background prediction as a function of E ν QE. So far, no strong evidence for oscillations in antineutrino mode (although currently limited by statistics). Interestingly, no evidence of significant excess at low energy in antineutrino mode. This has already placed constraints to various suggested low energy excess interpretations. In process of collecting more data for a total of 5.0e20 POT. This will improve sensitivity to oscillations, and allow further investigation of the ν low energy excess. Have submitted a request for 10.0e20 POT. Projected MiniBooNE 90% CL ν μ  ν e sensitivity for extra POT __ _ __ Preliminary

21 Coming soon… ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT21 Combined ν e and ν e analysis for low energy events with systematic correlations properly included, for testing various low energy excess interpretations Combined ν e and ν e appearance analysis (with CP violation) for stronger constraints on oscillations Combined MiniBooNE-NuMI ν e appearance analysis NuMI ν e distribution [uses different beam] [arXiv: [hep-ex], submitted to Phys. Rev. Lett.] _ _

22 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT22 Thank you! Y.Liu, D.Perevalov, I.Stancu University of Alabama S.Koutsoliotas Bucknell University E.Hawker, R.A.Johnson, J.L.Raaf University of Cincinnati T. L. Hart, R.H.Nelson, M.Tzanov, M.Wilking, E.D.Zimmerman University of Colorado A.A.Aguilar-Arevalo, L.Bugel, L.Coney, Z. Djurcic, K.B.M.Mahn, J.Monroe, D.Schmitz M.H.Shaevitz, M.Sorel Columbia University D.Smith Embry Riddle Aeronautical University L.Bartoszek, C.Bhat, S.J.Brice B.C.Brown, D. A. Finley, R.Ford, F.G.Garcia, C. Green, P.Kasper, T.Kobilarciik, I.Kourbanis, A.Malensek, W.Marsh, P.Martin, F.Mills, C.D.Moore, E.Prebys, A.D.Russell, P.Spentzouris, R.J.Stefanski, T. Williams Fermi National Accelerator Laboratory D.C.Cox, T.Katori, H.Meyer, C.C.Polly, R.Tayloe Indiana University H.Ray, B. Osmanov, J. Grange, J. Mousseau University of Florida G.T.Garvey, A.Green, C.Green, W.C.Louis, G.McGregor, G.B.Mills, V.Sandberg, R.Schirato, Z. Pavlovic R.Van de Water, D.H.White, G.P.Zeller Los Alamos National Laboratory R.Imlay, J.A. Nowak, W.Metcalf, S.Ouedraogo, M. Sung, M.O.Wascko Louisiana State University J.M.Conrad, G. Karagiorgi, V. Nguyen Massachusetts Institute of Technology J.Cao, Y.Liu, B.P.Roe, H.J.Yang University of Michigan A.O.Bazarko, E. M. Laird, P.D.Meyers, R.B.Patterson, F.C.Shoemaker, H.A.Tanaka Princeton University P.Nienaber Saint Mary's University of Minnesota J. M. Link Virginia Polytechnic Institute C.E Anderson, A.Curioni, B.T.Fleming,S.K. Linden, M. Soderberg Yale University The MiniBooNE Collaboration

23 The LSND experiment ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT23 LSND looked for ν e appearing in a ν μ beam Signature: Cerenkov light from e+ (CC) Scintillation light from nuclear recoil Delayed n-capture (2.2 MeV) __

MiniBooNE antineutrino flux prediction: 15.7% 83.7% 0.2% 0.4% Event rates: (xsec-weighted, after selection cuts) ~14,000 ν μ CCQE events (~70% pure) ~ 140 ν e CCQE events (~40% pure) ________________________________________________________________ MiniBooNE antineutrino running First antineutrino results correspond to dataset collected for 3.4e20 POT _ _ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT24 [arXiv: [hep-ex], accepted by Phys. Rev. D]

25 neutrino mode: ν μ → ν e oscillation search antineutrino mode: ν μ → ν e oscillation search [Phys. Rev. Lett. 98, (2007)] ν mode flux ~6% ν __ ________________________________________________________________ MiniBooNE flux prediction 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT25 ~18% ν WS further amplified to ~30% in ν mode due to cross-section _

26 ________________________________________________________________ MiniBooNE event rate prediction 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT26 Although delivered POT only reduced by a factor of ~2, overall rate down by almost an order of magnitude!

27 ________________________________________________________________ Neutrino cross sections 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT27 Channel of interest at MiniBooNE: CCQE

28 MiniBooNE systematics: ________________________________________________________________ Background systematic uncertainties Source E ν QE range (MeV) Flux from π + /μ + decay Flux from π - /μ - decay Flux from K + decay Flux from K - decay Flux from K 0 decay Target and beam models ν cross section NC π 0 yield Hadronic interactions External interactions (dirt) Optical model Electronics & DAQ model Total (unconstrained) uncertainty (%) Antineutrino appearance search is statistics limited 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT28

29 Antineutrino results ________________________________________________________________ Background systematic uncertainties 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT29

30 Antineutrino results ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT30 Performed 2-bin χ 2 test for each assumption Calculated χ 2 probability assuming 1 dof The underlying signal for each hypothesis, S, was allowed to vary (thus accounting for the possibility that the observed signal in neutrino mode was a fluctuation up, and the observed signal in antineutrino mode was a fluctuation down), and an absolute χ 2 minimum was found. Three extreme fit scenarios were considered: –Statistical-only uncertainties –Statistical + fully-correlated systematics –Statistical + fully-uncorrelated systematics E ν QE range (MeV) ν mode ν mode (3.4e20 POT)(6.5e20 POT) Data61544 MC ± sys+stat (constr.)61.5 ± ± 43.4 Excess (σ)-0.5 ± 11.7 (-0.04)128.8 ± 43.4 (3.0) [hep-ex/ ] _ (same binning as in neutrino mode)

31 Low E interpretations ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT31 [Nelson and Walsh, Phys. Rev. D 77, (2008)] New light gauge boson 3 sterile neutrinos + gauged B-L interaction gives rise to MSW-type potential  strong energy dependence in SBL, small mixing oscillations Predicts higher anti- ν than ν oscillation probability

32 Low E interpretations ________________________________________________________________ 03/03/2009 LaThuile 2009 – G. Karagiorgi, MIT32 CP violation Maltoni, Schwetz, hep- ph/ [Maltoni, Schwetz, hep-ph/ ; G.K., et al, hep-ph/ ; G.K., AIP Conf.Proc.981: ,2008 ] P( ν μ  ν e ) = 4|U μ4 | 2 |U e4 | 2 sin 2 x |U μ5 | 2 |U e5 | 2 sin 2 x |U μ5 ||U e5 ||U μ4 ||U e4 | sinx 41 sinx 51 cos(x 54 ±φ 45 ) 3+2 sterile neutrino model oscillation probability: (―) Dirac CPV phase