A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.

Slides:



Advertisements
Similar presentations
PHYSIQUE MESOSCOPIQUE
Advertisements

Kondo Physics from a Quantum Information Perspective
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Tunneling through a Luttinger dot R. Egger, Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf M. Thorwart, S. Hügle, A.O. Gogolin.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Fractional topological insulators
5/2/2007Cohen Group Meeting1 Luttinger Liquids Kevin Chan Cohen Group Meeting May 2, 2007.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Axel Freyn, Ioannis Kleftogiannis and Jean-Louis Pichard
Theory of the Quantum Mirage*
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
Correlations in quantum dots: How far can analytics go?
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Transport properties: conductance and thermopower
Electron coherence in the presence of magnetic impurities
Electronic Conduction of Mesoscopic Systems and Resonant States Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo Collaborators: Akinori.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Vyacheslavs (Slava) Kashcheyevs Collaboration: Christoph Karrasch, Volker Meden (RTWH Aachen U., Germany) Theresa Hecht, Andreas Weichselbaum (LMU Munich,
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Chung-Hou Chung Collaborators:
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Single-molecule-mediated heat current between an electronic and a bosonic bath In Collaboration with: Avi Schiller, The Hebrew University Natan Andrei,
2003/8/18ISSP Int. Summer School Interaction effects in a transport through a point contact Collaborators A. Khaetskii (Univ. Basel) Y. Hirayama (NTT)
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Two particle states in a finite volume and the multi-channel S- matrix elements Chuan Liu in collaboration with S. He, X. Feng Institute of Theoretical.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
東京大学 青木研究室 D1 森本高裕 東京大学 青木研究室 D1 森本高裕 2009 年 7 月 10 日 筑波大学 Optical Hall conductivity in ordinary and graphene QHE systems Optical Hall conductivity in.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Conductance of nano-systems with interactions coupled
Current noise in 1D electron systems ISSP International Summer School August 2003 Björn Trauzettel Albert-Ludwigs-Universität Freiburg, Germany [Chung.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also:
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
نانوترانزیستورهای الکترومکانیکی مولکولی
QHE discovered by Von Klitzing in 1980
Conductance of nanosystems with interaction
Fermi surface, pseudogap and superconductivity in the t-J model
Conductance through coupled quantum dots
Conductance through coupled quantum dots
Low energy approach for the SU(N) Kondo model
Persistent spin current
Tony Leggett Department of Physics
Tunneling through a Luttinger dot
Presentation transcript:

A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems with interaction

Nature 417, (13 June 2002) Kondo resonance in a single-molecule transistor WENJIE LIANG*, MATTHEW P. SHORES†, MARC BOCKRATH*, JEFFREY R. LONG† & HONGKUN PARK*

open system

Conductance: ΔI = GΔV +ΔV

Conductance: ΔI = GΔV +ΔV IF the system is the Fermi liquid 

odd even Gogolin (1994): persistent currents for non-interacting systems

Conductance formulas: two-point energy: Favand and Milla (1998): for non-interacting systems, g<<1 Molina et al. (2003)

Conductance formulas: two-point energy: persistent current: Sushkov (2001) Meden and Schollwöck (2003)

Conductance formulas: two-point energy: persistent current: charge stiffness:

min max charge stiffness:

note: Fermi liquid linear conductance zero temperature non-interacting single-channel leads

Proof of the method Step 1. Conductance of a Fermi liquid system at T=0 Kubo T=0 define (n.i.: Fisher-Lee) ‘Landauer’

Step 2. Quasiparticle Hamiltonian (Landau Fermi liquid)

Step 3. Quasiparticles in a finite system N

Step 4. Quasiparticle energies ‘single (quasi)particle energy’; also eigenenergy of  Φ dependence of is as in non-interacting systems

Step 5. Non-interacting systems

open system

ring system

Step 5. Non-interacting system  ground-state energy:

Examples 1 Noninteracting system

2 Anderson impurity model Wiegman, Tsvelick (1982)

3 Double quantum dot Oguri, PRB 56, (1997)

broken time reversal symmetry (e.g., due to external magnetic field) : 4 Aharonov-Bohm system (Kondo-Fano)

broken time reversal symmetry (e.g., due to external magnetic field) : 4 Aharonov-Bohm system (Kondo-Fano)

Bułka, Stefanski, PRL (2001) Hofstetter, König, Schoeller, PRL (2001)

Summary: 1.IF the system is Fermi liquid … 2.Calculate the ground-state energy of the interacting (ring) system 3.Determine the conductance from the two (four)-point energy formula T. Rejec and A. Ramšak, PRB 68, (2003) T. Rejec and A. Ramšak, PRB 68, (2003)

‘0.7 anomaly’

1988

“0.7 structure” Thomas et al. PRL 77, 136 (1996):

Resonant scattering

Singlet transmission Triplet transmission

Results: “1/4” and “3/4” anomalies

PRB 44, (1991) exp.: “0.7” and “0.3” Phil. Mag. 77, 1213 (1998)

V-groove

PRL 2002

Summary “0.7” anomaly is “ 1/4 ”+” 3/4 ” anomaly anomalies also in S and  in magnetic field “1/2” extended Anderson model (Kondo) open problems: - Kondo physics? - doping dependence? - “ 0.5 ” anomaly Rejec, Ramšak, Jefferson, PRB 67, (2003) and refs. therein

Tomi Rejec

Narrow wires (10~20 nm) “V”-groove