Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.

Slides:



Advertisements
Similar presentations
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Advertisements

One-dimensional approach to frustrated magnets
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Competing phases of XXZ spin chain with frustration Akira Furusaki (RIKEN) July 10, 2011 Symposium on Theoretical and Mathematical Physics, The Euler International.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Jinwu Ye Penn State University Outline of the talk: 1.Introduction to Boson Hubbard Model and supersolids on lattices 2.Boson -Vortex duality in boson.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, (2005); Phys. Rev. B 70,
Degeneracy Breaking in Some Frustrated Magnets Doron BergmanUCSB Physics Greg FieteKITP Ryuichi ShindouUCSB Physics Simon TrebstQ Station HFM Osaka, August.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Hubbard model(s) Eugene Demler Harvard University Collaboration with
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Fractional topological insulators
Strongly interacting cold atoms Subir Sachdev Talks online at
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Jordan-Wigner Transformation and Topological characterization of quantum phase transitions in the Kitaev model Guang-Ming Zhang (Tsinghua Univ) Xiaoyong.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Bosonic Mott Transitions on the Triangular Lattice Leon Balents Anton Burkov Roger Melko Arun Paramekanti Ashvin Vishwanath Dong-ning Sheng cond-mat/
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
Non-Fermi liquid vs (topological) Mott insulator in electronic systems with quadratic band touching in three dimensions Igor Herbut (Simon Fraser University,
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
(Simon Fraser University, Vancouver)
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Quantum exotic states in correlated topological insulators Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Mott Transition and Superconductivity in Two-dimensional
Ashvin Vishwanath UC Berkeley
A. S=1/2 fermions(Si:P, 2DEG) Metal-insulator transition Evolution of magnetism across transition. Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/ )
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
July 2010, Nordita Assa Auerbach, Technion, Israel AA, Daniel P. Arovas and Sankalpa Ghosh, Phys. Rev. B74, 64511, (2006). G. Koren, Y. Mor, AA, and E.
1 Two dimensional staggered current phase Congjun Wu Reference: C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, (2005). C. Wu and S. C.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
B3 Correlations in antiferromagnets
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum vortices and competing orders
10 Publications from the project
Superfluid-Insulator Transition of
Topological Order and its Quantum Phase Transition
Quartetting and pairing instabilities in 1D spin 3/2 fermionic systems
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Exotic magnetic states in two-dimensional organic superconductors
Fig. 3 Coupling matter to a ℤ2 gauge field in a two-leg ladder.
Presentation transcript:

Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T. & A.F., PRL 88, (2002) PRB 66, (2002) PRB 69, (2004)

Oct. 26, 2005 KIAS 2 Contents Extended Hubbard model Ionic Hubbard model Generalized Hubbard ladder Various types of insulators: Mott insulator, Charge-Density Wave, Peierls insulator, Band insulator, staggered-flux state, …. One-dimensional models of interacting electrons at half filling Weak-coupling approach, Bosonization

Oct. 26, 2005 KIAS 3 Extended Hubbard model at half filling t U V

Oct. 26, 2005 KIAS 4 Standard phase diagram (before 1999) Emery (1979) Hirsch (1984) Cannon, Scalettar, Fradkin (1991) ……….

Oct. 26, 2005 KIAS 5 Weak-coupling theory (g-ology) 1-loop RG charge sector Charge gap if Spin sector Spin gap if spin sector RL

Oct. 26, 2005 KIAS 6 Phase diagram since 1999 Discovery of Bond-charge-density wave (BCDW) phase Nakamura (1999, 2000) Sengupta, Sandvik, Campbell (2002) ….. or Bond-Order-Wave (BOW) Found numerically

Oct. 26, 2005 KIAS 7 Vertex correction Separate transitions in charge & spin sectors In the strong-coupling regime 1 st order SDW-CDW transition Degeneracy of zeros of and are lifted

Oct. 26, 2005 KIAS 8 Tam, Tsai, & Campbell, cond-mat/

Oct. 26, 2005 KIAS 9 Bosonization charge spin Order parameters

Oct. 26, 2005 KIAS 10 Bosonized form of the Hamiltonian density kinetic energy marginal perturbation relevant perturbation irrelevant perturbation SU(2) symmetry etc

Oct. 26, 2005 KIAS 11 Order parameters Classical analysis

Oct. 26, 2005 KIAS 12 Phase transitions SDW-BCDW transition: 2 nd orderCDW-BCDW transition: 2 nd orderCDW-SDW transition:1 st order

Oct. 26, 2005 KIAS 13 Ground-state phase diagram from bosonization approach 1-loop RG + classical analysis M. Tsuchiizu and A.F., Phys. Rev. Lett. 88, (2002)

Oct. 26, 2005 KIAS 14 Numerical Results Quantum Monte Carlo Sengupta, Sandvik, & Campbell, Phys. Rev. B 65, (2002) DMRG Y.G. Zhang, PRL 92, (2004)

Oct. 26, 2005 KIAS 15 Tricritical point on the CDW-BCDW phase boundary SSE QMC Luttinger liquid parameter at the continuous transition Sandvik, Balents & Campbell, PRL 92, (2004)

Oct. 26, 2005 KIAS 16 umklapp scattering becomes relevant for

Oct. 26, 2005 KIAS 17 Phase diagram (schematic) 1 st order transition CDW-BCDW c=1 Gaussian SDW-BCDW c=1 SU(2) 1

Oct. 26, 2005 KIAS 18 Extended Ionic Hubbard model at half filling Ionic Hubbard model Nagaosa & Takimoto (1986), Egami, Ishihara, & Tachiki (1993) Fabrizio, Gogolin, & Nersesyan, PRL 83, 2014 (1999) and Mott insulator and Band insulator Quantum Phase Transition ?

Oct. 26, 2005 KIAS 19 Spontaneously Dimerized Insulating Phase (SDI) (= BCDW Phase) 0 IsingKT BISDI MI Fabrizio, Gogolin, & Nersesyan, PRL 83, 2014 (1999)

Oct. 26, 2005 KIAS 20 Extended ionic Hubbard model nearest-neighbor repulsion V Bosonization perturbative RG + classical analysis

Oct. 26, 2005 KIAS 21 Bosonized form of the Hamiltonian density Kinetic energy marginal perturbation irrelevant perturbation relevant perturbation

Oct. 26, 2005 KIAS 22 Classical analysis GaussianIsing

Oct. 26, 2005 KIAS 23 Ground-state phase diagram cf. 1 st order transition

Oct. 26, 2005 KIAS 24 Schematic phase diagrams

Oct. 26, 2005 KIAS 25 Generalized Hubbard ladder at half filling t⊥t⊥ V ⊥, J ⊥ t pair

Oct. 26, 2005 KIAS 26 rung singlet state (D-Mott) charge density wave (CDW) Various Insulating Ground States that can appear in half-filled ladders singlet paring state (S-Mott) staggered flux state (SF) d-density wave orbital antiferromagnet Ex. SO(5) ladder model ground-state phase diagram Lin, Balents & Fisher (1998) Fjaerestad & Marston (2002)

Oct. 26, 2005 KIAS 27 Strong-coupling approach 4 basis states

Oct. 26, 2005 KIAS 28 degenerate perturbation theory

Oct. 26, 2005 KIAS 29 CDW—S-Mott transition D-Mott—S-Mott transition Ising model in a transverse field ordered state disordered state XXZ model in a magnetic field gapless (c=1) Gaussian transition

Oct. 26, 2005 KIAS 30 density wave order s-wave p-wave staggered dimerization d-wave d-density-wave =SF f-wave Weak-coupling approach s-wave p-wave d-wave f-wave These states break Z 2 symmetry

Oct. 26, 2005 KIAS 31 Bosonization Hamiltonian density chargespin Order parameters pinning potential

Oct. 26, 2005 KIAS 32 Ising transitions order disorder Disorder parameters

Oct. 26, 2005 KIAS 33 Universality class of quantum phase transitions Gaussian transition (c=1) Ising transition (c=1/2) SU(2) criticality (c=3/2) 2 or 1 st order transition M. Tsuchiizu and A. Furusaki Phys. Rev. B 66, (2002)

Oct. 26, 2005 KIAS 34 Duality transformation Momoi & Hikihara, PRL (2003)

Oct. 26, 2005 KIAS 35 model V’

Oct. 26, 2005 KIAS 36 Summary Competing interactions competing phases exotic order Various (density) ordered phases Various Mott insulating phases 2D systems ? M.T. & A.F., PRL 88, (2002) PRB 66, (2002) PRB 69, (2004)