Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.

Slides:



Advertisements
Similar presentations
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Advertisements

Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Francesca Gulminelli & Adriana Raduta LPC Caen, FranceIFIN Bucharest, Romania Statistical description of PNS and supernova matter.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
The Equation of State of Nuclear Matter and Neutron Stars’ Structure International School of Nuclear Physics, 36° Course, Nuclei in the Laboratory and.
Spin polarization phenomena in dense nuclear matter Alexander Isayev Kharkov Institute of Physics and Technology Ukraine.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
Metastability of Hadronic Compact Stars I. Vidaña & I. Bombaci, P. K. Panda, C. Providência “The Complex Physics of Compact Stars” Ladek Zdroj, Poland,
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Has the critical temperature of the QCD phase transition been measured ?
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
Modification of scalar field inside dense nuclear matter.
P. Arumugam Centro de Física das Interacções Fundamentais and Departamento de Física, Instituto Superior Técnico, Lisbon, Portugal S.K. Patra, P.K. Sahu,
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical.
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Neutrino Reactions on the Deuteron in Core-Collapse Supernovae Satoshi Nakamura Osaka University Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
Modeling the Hadronization of Quark Matter G. Toledo Sánchez Instituto de Fisica UNAM, Mexico A. Ayala, G. Paic, M. Martinez ICN-UNAM, México Strangeness.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From Neutron Skins to Neutron Stars to Nuclear.
Limits of applicability of the currently available EoS at high density matter in neutron stars and core-collapse supernovae: Discussion comments Workshop.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Effects of Brown-Rho scaling in nuclear matter, neutron stars and finite nuclei T.T.S. Kuo ★ ★ Collaborators: H. Dong (StonyBrook), G.E. Brown (StonyBrook)
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
Quark deconfinement in compact stars and GRBs structure Alessandro Drago University of Ferrara.
Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.
Nucleon PDF inside Compressed Nuclear Matter Jacek Rozynek NCBJ Warsaw ‘‘Is it possible to maintain my volume constant when the pressure increases?” -
Neutron Star Strucure from the Quark-Model Baryon-Baryon Interaction Kenji Fukukawa (RCNP, Osaka) Collaborator: M. Baldo, G. F. Burgio, and H.-J. Schulze.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Effect of curvature on confinement-deconfinement phase transition By Ashok Goyal & Deepak Chandra * Department of Physics & Astrophysics University of.
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Transport properties of nuclear matter within Brueckner-Hartree-Fock Hongfei Zhang ( 张鸿飞) Lanzhou University Aug. 3, 2015 PKU-CUSTIPEN Workshop on " Advances.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
QM08, Jaipur, 9 th February, 2008 Raghunath Sahoo Saturation of E T /N ch and Freeze-out Criteria in Heavy Ion Collisions Raghunath Sahoo Institute of.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
The nuclear EoS at high density
Mean free path and transport parameters from Brueckner-Hartree-Fock
Microscopic Equations of State
EOS discussion.
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
Quark star RX J and its mass
Aspects of the QCD phase diagram
INFN Sezione di Catania
Phase transitions in neutron stars with BHF
QCD & cosmology The quest for cosmological signals of QCD dynamics
Symmetry energy with non-nucleonic degrees of freedom
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
Variational Calculation for the Equation of State
A possible approach to the CEP location
Protoneutron stars in the Brueckner-Hartree-Fock approach and
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN

Outline  Introduction to proto-neutron stars (PNS).  Microscopic nuclear Equation of State (EoS).  A static model for PNS.  Hadron-Quark phase transition.  Structure and Stability.  Conclusions.

Proto-neutron stars t  50 sec (after bounce) T ~ 30  50 MeV S ~ 1  10  trapping (1 st stage)  free (2 nd stage) Pons et al. ApJ, 513, 780 (1999) Prakash et al. Phys.Rep. 280,1 (1997)

Microscopic EoS (main ingredients)  Finite Temperature BHF (Brueckner-Hartree-Fock) 1.Two Body Correlations (Goldstone Matrix - Ladder summation) 2.Bloch-De Dominicis expansion of the grand-canonical potential.  Realistic N-N interaction (Av18 and Bonn ) 1.Realistic: parameters adjusted to reproduce N-N scattering phase shifts. 2.Bonn: One Boson Exchange N-N potential   Three Body Forces (TBF) 1.Urbana interaction. 2.Saturation improved  Thermodynamic quantities 1.Pressure, Chemical potential, critical temperature… 2.Hugenholtz-Van Hove theorem. 3.Experimental constraint from HIC (limiting temperature)

Microscopic EoS H-F

Microscopic EoS Three Body Forces:

Microscopic EoS  Pressure  Free energy M.Baldo, L.S.Ferreira PRC (1999)  Chemical potential & T c

Limiting Temperature  Nuclear matter Finite nuclei (S.Levit,P.Bonche, Nucl.Phys.A437,426 (1985) Liquid drop Corr.’s Coexistence equations

Limiting Temperature Natowitz et al. PRC (2002) M.Baldo, L.S. Ferreira, O.E. Nicotra, PRC (2004) & NPA c (2005) S.Fritsch, N.Kaiser, W.Weise, PLB (2002) B. Ter Haar & R. Malfliet Phys.Rep. 149, 207 (1987) H.Huber, F.Weber, M.K.Weigel PRC 57,3484,(1998)

 Stellar matter (n,p,e -,    ’s)  free  trapped O.E.Nicotra et al. A&A 451,231(2006) 1.Overall strong T-dependence. 2.Increasing proton & leptons fractions (nucleonic). 3.Deleptonization and hyperons < 30%. 1. Overall weak T-dependence. 2. Proton rich matter ~30% (nucleonic case). 3.    delayed (hyperonic case).

Proto-neutron stars 1)Isothermal core (T core ) )Isentropic envelope (S env ) )Cold outer crust (BPS+FMT). LS220 NPA 535,331 (1997)

Proto-neutron stars 1st stage: Isothermal and -rich core + Isentropic and -free envelope + Cold and -free crust = PNS in its early stage (t  1  5 sec) 2nd stage: Isothermal and -free core + Cold and -free crust = PNS in its final stage (t  40  50 sec) S env from matching conditions at  ~ 0.01 fm -3, T core as a free parameter. O.E.Nicotra, nucl-th/

Structure 1.  trapping reduce by ~0.1 M ๏ the maximum mass (nucleonic case). 2.Opposite behavior but with a maximum mass below 1.44 M ๏  quarks inclusion (hyperonic case). 1 ° stage. 2 ° stage. O.E.Nicotra et al. A&A 451,231(2006)

Quark phase G.F.Burgio et al. PRC (2002) Hadrons Quarks Phenomenological transition energy density. B fixed from phenomenological values of the transition energy density.

 Stellar matter (u,d,s,e -  ’s   free 1.Overall weak T-dependence. 2.e - and anti-quarks from thermal excitation. 3.Quark 33%. B 4.Quarks d decrease in favour of quarks s as  B increases.  trapped 1. Overall weak T-dependence. 2. Quark 42% and e 25%. 3. Quarks d and s lower  Quark phase Lepton number per baryon conserved.

 free  trapped Maxwell construction: QQ HH

Hybrid PNS O.E.Nicotra et al.astro-ph/ M max ~ 1.5 ÷ 1.56 M sun T core < 50 MeV M max weakly affected by  trapped M max ~ 1.48 ÷ 1.55 M sun T core ~ 50 MeV M max affected by 

Conclusions 1.A temperature profile was assumed with T core as free parameter. 2.Within this model metastability does not occur for hybrid proto-neutron stars. 3.In conclusion, this work, in analogy with what has been done in the zero temperature case, suggests the possibility to study hot and compact objects with a microscopic finite temperature EoS properly checked by constraints coming from heavy ion collisions experiments.

Hybrid PNS