1 Improving SO 2 AMFs: Comparison of different approaches P. Hedelt, P. Valks, D. Loyola Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut.

Slides:



Advertisements
Similar presentations
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Advertisements

Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Harmonisation of stratospheric NO 2 /O 3 column data products NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick and M. Van Roozendael Belgian.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
1 Operational O3M-SAF trace-gas column products: GOME-2 tropospheric NO 2, Ozone, and total SO 2 AT2 Seventh Workshop Helsinki, Sep Oct. 1, 2008.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Reconstructing the Emission Height of Volcanic SO2 from Back Trajectories: Comparison of Explosive and Effusive Eruptions Modeling trace gas transport.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
SO 2 Retrievals in the UV from Space Caroline Nowlan Atomic and Molecular Physics Division Harvard-Smithsonian Center for Astrophysics Collaborators: Kelly.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December 2002 Validation of ENVISAT trace gas data products by comparison.
Page 1 Validation Workshop, , IfE Bremen, G. Lichtenberg:Calibration status National Institute for Space Research SCIAMACHY Calibration status November.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
S5P tropospheric ozone product: Convective Cloud Differential method First German S5P Verification Meeting Bremen, November 2013 Pieter Valks DLR,
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
S5P Ozone Profile (including Troposphere) verification: RAL Algorithm R.Siddans, G.Miles, B.Latter S5P Verification Workshop, MPIC, Mainz th May.
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
TEMPO Simulation and Retrieval Tools and Algorithm Testing at SAO Xiong Liu 3 rd TEMPO Science Team Meeting Huntsville, Al, May 27,
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Validation of SCIAMACHY total ozone: ESA/DLR V5(W) and IUP WFDOAS V2(W) M. Weber, S. Dikty, J. P.Burrows, M. Coldewey-Egbers (1), V. E. Fioletov (2), S.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou,
OZONE PRODUCTS S5P Verification Workshop 20/05/2015 MPIC, Mainz.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
S5P cloud products Sebastián Gimeno García, Ronny Lutz, Diego Loyola German S5P Verification Meeting 1 Bremen, November Chart 1>
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
L. Zenner 1, E. Fagiolini 2, F. Flechtner 3, T. Gruber 1, G. Schwarz 2, T. Trautmann 2, J. Wickert 3 1 Institut für Astronomische u. Physikalische Geodäsie,
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Monitoring of sulphur dioxide emissions from satellite as part of GSE PROMOTE Jos van Geffen, Michel Van Roozendael, Isabelle De Smedt, Caroline Fayt (BIRA-IASB)
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Status of ongoing Kiruna site Myojeong Gu, Thomas Wagner MPI for Chemistry, Mainz, Germany 1.
March 21, ‘06 comp. May 5, ‘06 comp Summary ~4% swath angle dependent difference Up to 9% difference over clouds Differences correlate with snow/ice.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
Progress on the unification of the SO 2 retrieval for GOME-2A/B and OMI C. Hörmann, S. Beirle, K. Mies and T. Wagner First German S5P Verification Meeting.
GOME2 Error Study WP 260: Slant Column Errors due to neglicence of BRDF PM3 02/2002 Slant Column Errors due to Assumption of.
SAGE III Aerosol Studies: Size Distribution Retrievals and Validation Mark Hervig GATS Inc.
Status of the OMI Ozone DOAS Product June 2006 Pepijn Veefkind.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
SADDU Meeting, March 2009, SRON, Utrecht1 Recent progress on nadir UV-Vis retrievals at BIRA M. Van Roozendael 1 C. Lerot 1, I. De Smedt 1, N. Theys.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
Modeling of spectral fine-structure in GOME spectra Rutger van Deelen Otto Hasekamp Jochen Landgraf KNMI November 29, 2006.
GOME2 Error Study WP 150: Basic SNR column retrieval PM2 10/2001 SNR Basic Column Retrieval R. De Beek, M. Weber,
Iodine Monoxide (IO) Nadir Scientific Data Product
DOAS workshop 2015, Brussels, July 2015
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Johan de Haan Pepijn Veefkind
Latest Results of HDAC analysis
How well can we determine the tropopause
Spectral appearance of terrestrial exoplanets
HDAC analysis: Hydrogen in Titan‘s exosphere
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
Sentinel 5 Precursor Ozone Column products
Final results of HDAC analysis
Authors: B.Kerridge, R.Siddans, J.Reburn, B.Latter and V.Jay
The Evolution of NO2 over Beijing and its vicinity during an extended period of APEC 2014 Ting Wang1, François Hendrick2,
Presentation transcript:

1 Improving SO 2 AMFs: Comparison of different approaches P. Hedelt, P. Valks, D. Loyola Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Methodik der Fernerkundung Abteilung Atmosphärenprozesooren First German S5P Verification Meeting, Bremen November 2013

Overview Prototype Algorithm: Fitting windows: nm nm (VCD>40 DU) nm (VCD>250DU) Single Wavelength AMF Verification Algorithm: Fitting windows nm nm (VCD>40 DU) AMF: Different Approaches The SO 2 amount and plume height is unknown at the time of the measurement Direct fitting computational too expensive 2

Current aproach: Classical DOAS approach Current GOME-2 SO 2 approach DOAS fit of measured spectra  SO 2 SCD Single-wavelength AMF Viewing & surface/cloud conditions Fixed SO 2 profile (Gaussian at 2.5, 6 and 15km) SO 2 VCD assumed for AMF: Standard fitting window: 3 DU VCDs underestimated > 25 DU! VCD=SCD/AMF Approach independent of measured SO 2 SCD 3

Current aproach: Classical DOAS approach Current GOME-2 SO 2 approach DOAS fit of measured spectra  SO 2 SCD Single-wavelength AMF Viewing & surface/cloud conditions Fixed SO 2 profile (Gaussian at 2.5, 6 and 15km) SO 2 VCD assumed for AMF: Standard fitting window: 3 DU VCDs underestimated > 25 DU! Alternative fitting window (>40 DU): 100 DU Currently under investigation VCD=SCD/AMF Approach independent of measured SO 2 SCD 4

Improved approach: Iterative AMF approach Approach based on GOME-2 O 3 retrieval DOAS fit of measured spectra  SO 2 SCD Single-wavelength AMF Viewing & surface/cloud conditions Fixed SO 2 profile (Gaussian at 2.5, 6 and 15km) Calculation of AMF in iterative way Determine VCD from initial (arbitrary) AMF Calculate new AMF Iterate until VCD converges VCD = SCD/AMF AMF (partly) depends on measured SO 2 SCD 5

Improved approach: Empirical DOAS approach Approach based on OMI O 3 retrieval DOAS fit of measured spectra  SO 2 SCD Creation of simulated spectra ( nm) Viewing & surface/cloud conditions Fixed SO 2 profile (2,5km FWHM Gaussian at 2.5, 6 and 15km) Assuming set of SO 2 VCDs DOAS fit of simulated spectra  SCDs for assumed VCDs Interpolation of measured SCD on retrieved SCD grid  SO 2 VCD VCD depends on measured SCD Errors in DOAS fit cancel out 6

Examples Kasatochi

8

9

Examples Kasatochi

11

Examples Grimsvötn

13

Current Status Classical DOAS approach (GOME-2) LUT ready for Standard fitting window S5P LUT can be created very fast Iterative AMF approach AMFs are currently calculated on-line AMF LUTs for different VCDs can be created fast Empirical DOAS (GOME-2) Spectra have been computed from nm VCD LUT for different fitting windows is ready LUT interpolation under construction Currently tests are performed S5P spectra generation take about 1 month 14

Physical parameters of LUTs Parameter# grid pointsGrid values SZA ° VZA ° RAA ° Albedo Pressure mbar O 3 VCD7225 – 525 DU Plume height32.5, 6, 15 km AMF wavelength (Classical approach & Iterative AMF) 2315,327 nm SO 2 VCD grid (Empirical DOAS & Iterative AMF) DU 15

Summary & Conclusion Current approach AMF independent of measured SO 2 SCD VCDs are under/overestimated Iterative AMF approach AMF is fitted in iterative way AMF partly dependent on measured SCD Better VCDs Empirical DOAS approach DOAS fit of both measured an simulated spectra AMF (or VCD) depends on measured SCD DOAS errors potentially cancel out Results close to direct fitting results 16

Thank you for your attention! 17

Summary Classical DOAS approach: Single-wavelength AMF for viewing & surface conditions (315 / 327nm) Independent of measured SO 2 SCD Underestimates high SO 2 VCDs Iterative AMF approach Single-wavelength AMF for viewing & surface conditions (315 / 327nm) Iterative AMF fitting AMF (partly) depends on SCD Empirical DOAS approach DOAS retrieval of simulated spectra on pre-defined VCD grid Interpolation of measured SCD on grid of simulated SCDs Dependent on measured SO 2 SCD Errors in DOAS fit cancel out 18