Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team 19–22 March 2007 “ GDR Physique Quantique Mésoscopique ” Universal.

Slides:



Advertisements
Similar presentations
Anderson localization: from single particle to many body problems.
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Reading and manipulating valley quantum states in Graphene
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
4. Disorder and transport in DMS, anomalous Hall effect, noise
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Spin transport in spin-orbit coupled bands
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optical study of Spintronics in III-V semiconductors
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
School of Physics and Astronomy, University of Nottingham, UK
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Fluctuation conductivity of thin films and nanowires near a parallel-
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Frequency dependence of the anomalous Hall effect: possible transition from extrinsic to intrinsic behavior John Cerne, University at Buffalo, SUNY, DMR.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Electron coherence in the presence of magnetic impurities
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
Atomic Structural Response to External Strain for AGNRs Wenfu Liao & Guanghui Zhou KITPC Program—Molecular Junctions Supported by NSFC under Grant No.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Berry Phase Effects on Electronic Properties
Dephasing by magnetic impurities Tobias Micklitz, A. Altland and A
1 BULK Si (100) VALENCE BAND STRUCTURE UNDER STRAIN Sagar Suthram Computational Nanoelectronics Class Project
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Magnetothermopower in high-mobility 2D electron gas: effect of microwave irradiation Oleg Raichev Department of Theoretical Physics Institute of Semiconductor.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Microscopic theory of spin transport
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
Flat Band Nanostructures Vito Scarola
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Nanoelectronics Part II Many Electron Phenomena Chapter 10 Nanowires, Ballistic Transport, and Spin Transport
Orbitally phase coherent spintronics
Qian Niu 牛谦 University of Texas at Austin 北京大学
EE 315/ECE 451 Nanoelectronics I
Correlations of Electrons in Magnetic Fields
Persistent spin current
Information Storage and Spintronics 18
Presentation transcript:

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team 19–22 March 2007 “ GDR Physique Quantique Mésoscopique ” Universal conductance fluctuations, and Domain-wall dephasing in ferromagnetic GaMnAs nanowires: Laboratoire de Photonique et de Nanostructures – CNRS/LPN Route de Nozay, F – Marcoussis, France R. Giraud, L. Vila, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, G. Faini a large phase coherence length for a quantum spintronics in nanomagnets

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Outline  The MesoSpin project at LPN  Phase-coherent spin transport in nanostructures: Spin-orbit coupling vs. Exchange interaction  Phase-coherent spin transport in ferromagnets: Strong decoherence mechanisms Strategy for mesoscopic transport in nano-magnets  Universal Conductance Fluctuations in epitaxial ferromagnetic GaMnAs nanowires: A large effective phase coherence length Dephasing by a spin disorder (domain walls) Dominant mechanisms ?

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team i) Spin-SET, Spin Qu-bit Phase-coherent manipulation of a localized or a delocalized spin All-electrical control of the two spin-states of a single electron spin localized in a vertical quantum dot The MesoSpin project contributes to make a new link between spintronics and mesoscopic physics It is based on all-semiconducting III-V materials, and uses an epitaxial ferromagnet GaMnAs, eventually integrated onto a conventional semiconducting heterostructure ii) Coherent spin transport Phase-coherent control of a spin current in a ferromagnet or a 2DEG L = 1 µm W = 150 nm Ø ~ 100 nm W ~ 30 nm Ø ~ 100 nm Electrical spectroscopy of TAMR in a spin Zener-Esaki diode R. Giraud et al., APL 05’

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Spin-Orbit coupling Coherent manipulation of a spin-polarized current Exchange interaction vs. L. Vila et al., PRL 07’ Gate-controlled spin precession in a 2DEG Spin precession through a domain wall (non adiabatic spin transport) possibly tuned by an electric and/or a magnetic field The Datta/Das spin FET S. Datta, B. Das, APL 90’ Dephasing of a coherent spin current by DW J. Nitta, et al., PRL 97’ From J. Nitta « the micron scalethe nano scale Bychkov-Rashba coupling  in III-V materials  DW l spin flip < l spin-orbit (π-rotation) l exchange (π-rotation)   = 2m *  L ħ2ħ2  = 2πγM S L2L2 D

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Quantum corrections to the conductance as a probe of L  Saturation of L  due to magnetic impurities in a metal F. Pierre et al., PRB 68, (2003) Mesoscopic transport & Magnetism (1) V I + time-reversed paths Closed orbits... P. Mohanty, et al., PRL 97’ H. Pothier, et al., PRL 97’ Exchange ‘field’ to freeze single-spin fluctuations …but only ultra-short L  were reported to date, probably due to a short inelastic mean free path Jaroszynski et al. 95’, Aprili et al. 97’, Lee 04’, Saitoh et al. 05’ L  < 30 T = 30 mK Classical magneto-conductance dominates over Quantum corrections

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team How to preserve phase coherence in a ferromagnet ? → reduce spin-flip scattering… Conditions for quantum interferences in ferromagnets Anisotropy ‘field’ to freeze low-energy spin waves fluctuations Epitaxial ferromagnet to avoid low-energy spin fluctuations at grain boundaries Reduced role of the spin-orbit interaction Internal fields… large L inel Mesoscopic transport & Magnetism (2) Exchange interaction to minimize energy exchanges within a spin bath A ferromagnetic epilayer with a strong uniaxial magnetic anisotropy is a good candidate and should be equivalent to a non magnetic, low S-O coupling system, but with an internal B exchange At best: if spin-induced decoherence is limited perpendicular anisotropy  B int = B ext

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Substitutional Mn = Acceptor Bound magnetic polaron Impurity band / Mobility edge Delocalized hole-induced ferromagnetism Mn : …3d 5 4s 2 Ga → Mn  Mn 2+ (S=5/2) + h (J.-C. Girard, LPN) GaMnAs : an epitaxial ferromagnet Tuning of the magnetic properties Hydrogen-control of the hole density p p TCTC  (L. Thevenard, A. Lemaître, LPN) Domain Imaging by Kerr microscopy (coll.: N. Vernier, J. Ferré, LPS) 135 µm x 176 µm GaMnAs/InGaAs: Demagnetized 70 K Strain-induced magnetic anisotropy SQUID magnetometry (coll.: R.-M. Galéra, Institut Néel)

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Tailored by the strains induced by the substrate on the epilayer GaMnAs/GaAs : In-plane anisotropyGaMnAs/InGaAs : Out-of-plane anisotropy GaMnAs MBE – growth engineering of the anisotropy ‘Large’ positive AMR H > H A Single-domain magnetization state H < H A Coherent rotation vs. Domain walls Single-domain magnetization state What a magnet ! Large Anomalous Hall Effect, No AMR at any field...

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Quantum Transport in GaMnAs nanowires Nanowire: L=220nm, W=50nm L W Quantum corrections to G L. Vila, R. Giraud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara and G. Faini Phys. Rev. Lett. 98, (2007) Classical conductance and Quantum corrections

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team L = 1 µm W = 150 nm Metallic behaviour! g ~ 26 p ~ cm -3 D ~ 1 cm 2 /s ρ ~ 2 mΩ.cm Perpendicular anisotropy : low temperature & bias behaviour Measurements at eV < k B T  Ω ~ Ω Much larger than measured with 3d-metal nanowires! large L φ

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Three traces at base temperature… First run Second run, 2 days later (T raised to 4K..?) 24h after the green trace (with T=30mK) Perpendicular anisotropy : Universal Conductance Fluctuations Each trace is a 12h-measurement Universal Conductance Fluctuations as a probe of L 

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Perpendicular anisotropy : UCF temperature and bias behaviour Temp. dependence Bias  Current dependence Equivalence of the Bias and Temperature dependence of UCF

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Perpendicular anisotropy : check of the UCF nature Redistribution of the microscopic structural disorder configuration New reproducible magneto-fingerprint Single-domain magnetization state

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team  Universal Conductance Fluctuations in epitaxial ferromagnetic GaMnAs nanowires: A large effective phase coherence length Dephasing by a spin disorder (domain walls) Dominant mechanisms ? Outline  The MesoSpin project at LPN  Phase-coherent spin transport in nanostructures: Spin-orbit coupling vs. Exchange interaction  Phase-coherent spin transport in ferromagnets: Strong decoherence mechanisms Strategy for mesoscopic transport in nano-magnets

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Perp. anisotropy : Length dependence of the UCF amplitude only if L < L  (T)  L LL Direct evidence of large L  L > L  regime

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team L=220nm, W=50nm Temperature dependence of the UCF amplitude & Decoherence

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Large effective phase coherence lengths extracted from the ½classical analysis L  ~ mK L  ~ L T ~ 1/T 1/2 Universal scaling law L=220nm, W=50nm Temperature dependence of the UCF amplitude & Decoherence Unusual decoherence mechanism ? Deviations from standard ½ classical diffusive transport (Breakdown of Fermi liquid theory + Multi-band hole transport) Or ‘simply’… (a similar result was obtained in Regensburg: K. Wagner et al., PRL 97, (2006)) D is an intrinsic limitation to larger values of L φ in ferromagnetic DMS Decoherence ?

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Universal Conductance Fluctuations as a probe of L  Effective phase coherence length extracted from UCF within the framework of the semi-classical approximation… Quasi-1D regime (L T > W)Quasi-2D regime (L T < W)  G rms (e 2 /h) = (L  /L) 3/2  G rms (e 2 /h) = L T /L*(L  /L) 1/2 → Aperiodic conductance fluctuations Analysis of the UCF amplitude  Extraction of L  Similar values are obtained because of the same temperature dependence of L  and L T No dimensional crossover observed with temperature for nanowire widths W < 150 nm V I

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Direct evidence of a large L  : ‘Non local’ effects for L~L  L  L  The wave function feels the microscopic configuration of the voltage probes L > L  Only the nanowire contribution is probed R. Giraud, L. Vila, A. Lemaître and G. Faini to appear in Appl. Surf. Science (2007) 

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Outline  The MesoSpin project at LPN  Phase-coherent spin transport in nanostructures: Spin-orbit coupling vs. Exchange interaction  Phase-coherent spin transport in ferromagnets: Strong decoherence mechanisms Strategy for mesoscopic transport in nano-magnets  Universal Conductance Fluctuations in epitaxial ferromagnetic GaMnAs nanowires: A large effective phase coherence length Dephasing by a spin disorder (domain walls) Dominant mechanisms ?

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Modification of the correlation fields → Another insight of the partial failure of the semi-classical approximation... Structural vs. Spin disorder EFEF + Strain-induced inter-subbands mixing Planar vs. Perpendicular anisotropy

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team B Z < B A : Onset of coherent scattering by Domain Walls (no decoherence) Planar anisotropy : Dephasing by spin disorder (domain walls)  First evidence of dephasing of free carriers by DWs L. Vila, R. Giraud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara and G. Faini Phys. Rev. Lett. 98, (2007) AMR saturation field H A Pinned Domain Walls Planar anisotropy Uniform Single Domain Perpendicular anisotropy

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Dephasing by a spin disorder (domain walls) -1-  Dephasing of free carriers by DWs L. Vila et al., Phys. Rev. Lett. 98, (2007) Possible mechanisms for the additional dephasing in a ferromagnet Internal exchange field due to the perpendicular magnetization component (modification of the Aharonov-Bohm flux) → much too small in a DMS... Dipolar stray field of a domain wall → even smaller Modified AB phase Negligible influence in ferromagnetic DMS ! Perpendicular applied field B Z = H Z + H D + 4  M = 0 ! for a thin film (b«a) … Narrow nanowires  stray fields … … but the magnetization is small (M S <100mT) DW

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Dephasing by spin disorder (domain walls) -2-  Dephasing of free carriers by DWs L. Vila et al., Phys. Rev. Lett. 98, (2007) Possible mechanisms for the additional dephasing in a ferromagnet Berry phase in presence of a domain wall → but low density of DW (no multiplication at small fields) Yet, possible contribution in a non adiabatic spin transport regime ? Spin precession inside a domain wall (non adiabatic regime; L sf >  DW ) → should be sensitive to the internal DW structure Spin dephasing Spin manipulation of a coherent spin current based on exchange coupling On-going measurements on a single pinned DW to identify the dominant mechanism

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Dephasing by spin disorder (domain walls) -3- Possible mechanisms for the additional dephasing in a ferromagnet Berry phase in presence of a domain wall → but low density of DW (no multiplication at small fields) Yet, possible contribution in a non adiabatic spin transport regime ? Spin dephasing Spin manipulation of a coherent spin current based on exchange coupling... but possibly also affected by a perturbative spin-orbit coupling (anisotropy) Bi-axial anisotropy Geometrical contribution interfering trajectories on the Bloch sphere

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Dephasing by spin disorder (domain walls) -4-  Dephasing of free carriers by DWs L. Vila, R. Giraud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara and G. Faini Phys. Rev. Lett. 98, (2007) Advantage over non magnetic semiconductors for phase-coherent spin manipulation Fast evolution of the phase on a short length scale fixed by the domain wall width (~ 20 nm) Combination of different accumulated phases : e.g., phase shift in an AB interferometer Controled phase manipulation under domain wall distortion (static E or B fields) Some possible drawbacks/difficulties of spin manipulation in a ferromagnetic nanostructure Control and Stability of the magnetic configuration (anisotropy, pinning) Magnet manipulation : requires a small applied magnetic field Well-defined, tunable length scales in a metallic regime (e.g.,  DW, L sf )

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Summary & Conclusions  Large quantum interference effects have been unambiguously observed in epitaxial GaMnAs nanowires  Comparison between planar & perpendicular anisotropy: quantum interferences are dominated by structural disorder and an Aharonov-Bohm phase at large magnetic fields (single-domain regime) an additional phase is observed at small fields in presence of a spin disorder (dephasing by domain walls, due to either a Berry phase and/or non adiabatic spin transport -precession- through a magnetic domain wall)  This magnetic control of a phase coherent spin current gives a new way to manipulate the spin of free carriers, on a rather short lengthscale, using the exchange interaction and pinned domain walls. (alternative to the use of spin-orbit couplings)

Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team Spin-Orbit coupling Coherent manipulation of a spin-polarized current Exchange interaction vs. L. Vila et al., PRL 07’ Gate-controlled spin precession in a 2DEG Spin precession through a domain wall (non adiabatic spin transport) possibly tuned by an electric and/or a magnetic field The Datta/Das spin FET S. Datta, B. Das, APL 90’ Dephasing of a coherent spin current by DW J. Nitta, et al., PRL 97’ From J. Nitta « the micron scalethe nano scale Bychkov-Rashba coupling  in III-V materials  DW l spin flip « l spin-orbit (π-rotation) l exchange (π-rotation)   = 2m *  L ħ2ħ2  = 2πγM S L2L2 D