Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids TexPoint fonts used in EMF. Read the TexPoint manual before you delete.

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Dirac-Microwave Billiards, Photonic Crystals and Graphene Supported by DFG within SFB 634 S. Bittner, C. Cuno, B. Dietz, T. Klaus, M. Masi, M. Miski-Oglu,
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Emergent Majorana Fermion in Cavity QED Lattice
Bohr Model of the Hydrogen Atom Postulates Certain orbits are stationary. Photon emission occurs upon orbital trans. Angular momentum is quantized.
Pavel Buividovich (Regensburg). They are very similar to relativistic strongly coupled QFT Dirac/Weyl points Dirac/Weyl points Quantum anomalies Quantum.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Anderson localization in BECs
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
6/25/2015PHY 971 Presentation. 6/25/2015PHY 971 Presentation.
Transport properties of mesoscopic graphene Björn Trauzettel Journées du graphène Laboratoire de Physique des Solides Orsay, Mai 2007 Collaborators:
Guillermina Ramirez San Juan
Ordered States of Adatoms in Graphene V. Cheianov, O. Syljuasen, V. Fal’ko, and B. Altshuler.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
JILA June ‘95. BEC in external Potetnial V. Bagnato et al. Phys.Rev. 35, p4354 (1987) free space potential.
1 A new field dependence of Landau levels in a graphene-like structure Petra Dietl, Ecole Polytechnique student Frédéric Piéchon, LPS G. M. PRL 100,
Is graphene a strongly correlated electron system ? Antonio H. Castro Neto Buzios, August 2008.
Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
IWCE, Purdue, Oct , 2004 Seungwon Lee Exchange Coupling in Si-Quantum-Dot-Based Quantum Computer Seungwon Lee 1, Paul von Allmen 1, Susan N. Coppersmith.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Lund University From Rydberg to Atto physic Is matter a wave ?
2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento|Achim Richter |1 Graphene and Playing Relativistic Billards with microwaves Something.
Microwave Billiards, Photonic Crystals and Graphene
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Ballistic transport,hiral anomaly and radiation from the electron hole plasma in graphene Ballistic transport, chiral anomaly and radiation from the electron.
Ana Maria Rey March Meeting Tutorial May 1, 2014.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Silvia Tognolini First Year Workshop, 15 October 2013, Milan Investigating graphene/metal interfaces by time - resolved non linear photoemission.
ECT* 2013 Microwave billiards, graphene and photonic crystals
321 Quantum MechanicsUnit 2 Quantum mechanics unit 2 The Schrödinger equation in 3D Infinite quantum box in 3D 3D harmonic oscillator The Hydrogen atom.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Condensed exciton-polaritons in microcavity traps C. Trallero-Giner Centro Latinoamericano de Fisica, Rio de Janeiro, Brazil Quito/Encuentro de Fisica/2013.
Berry Phase Effects on Electronic Properties
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
1 Manipulation of Artificial Gauge Fields for Ultra-cold Atoms for Ultra-cold Atoms Shi-Liang Zhu ( Shi-Liang Zhu ( 朱 诗 亮 Laboratory.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter |1 Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards.
Confinement-deconfinement Transition in Graphene Quantum Dots P. A. Maksym University of Leicester 1. Introduction to quantum dots. 2. Massless electron.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Pablo Barberis Blostein y Marc Bienert
(Simon Fraser University, Vancouver)
The quantum kicked rotator First approach to “Quantum Chaos”: take a system that is classically chaotic and quantize it.
Band structure of graphene and CNT. Graphene : Lattice : 2- dimensional triangular lattice Two basis atoms X축X축 y축y축.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Introduction to Modern Physics A (mainly) historical perspective on - atomic physics  - nuclear physics - particle physics.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Topological physics with a BEC: geometric pumping and edge states Hsin-I Lu with Max Schemmer, Benjamin K. Stuhl, Lauren M. Aycock, Dina Genkina, and Ian.
Dirac’s inspiration in the search for topological insulators
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Flat Band Nanostructures Vito Scarola
Csaba G. Péterfalvi 1, László Oroszlány 2, Colin J. Lambert 1 and József Cserti 2 Intraband electron focusing in bilayer graphene New J. Phys
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Jiří Minář Centre for Quantum Technologies
Tunable excitons in gated graphene systems
Superconducting Qubits
Anderson localization of weakly interacting bosons
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spectroscopy of ultracold bosons by periodic lattice modulations
Nonlinear response of gated graphene in a strong radiation field
Berry phase in graphene: a semi-classical perspective
Presentation transcript:

Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A A Physique de la matière condensée au 21e siècle - L'impact de Jacques Friedel 26 janvier 2016

… … (2011)

Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids K K’ Graphene electronic spectrum

Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids K K’ « Dirac point » QED in a pencil trace… (K. Novoselov) Relativistic quantum physics in a benchtop experiment (A. Geim)

Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A A W=+1 W=-1 Winding of the wave function K K’

« Life and death of Dirac points » Manipulation of Dirac cones in artificial graphenes 0 Graphene-Dirac physics with microwaves Graphene-Dirac physics with cold atoms in an optical lattice More systems… W=-1 W=1 W=-1 W=1 deformation of honeycomb lattice Artificial graphenes

Motion and merging of Dirac points

« Semi-Dirac » spectrum massive ! massless ! Motion and merging of Dirac points

merging point at a symmetry point of the reciprocal lattice Honeycomb Brick wall The merging scenario is universal

Universal Hamiltonian The merging scenario is universal The parameter drives the topological transition  0 This Hamiltonian describes the topological transition, the coupling between valleys and the merging of the Dirac points

Honeycomb lattice of dielectric resonators Evanescent propagation between the dots -> Tight-binding description Measure of the reflexion coefficient  LDOS High flexibility 1) Look for the merging transition 2) Probe the edge states M. Bellec, U. Kuhl, F. Mortessagne (NICE), G. M. ~ 250 « atoms » (2 nd and 3 rd nearest neighbor couplings not negligeable) ~ 50cm Topological transition of Dirac points in a microwave experiment

Uniaxial strain 14 New edge states Topological transition of Dirac points in a microwave experiment P. Delplace, D. Ullmo, G.M., PRB 2011 See also photonic crystals

Atoms are trapped in an optical lattice potential and form an artifical crystal Honeycomb « brickwall » Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice L.Tarruell et al. Nature, 483, 302 (2012) Tilman Esslinger (Zürich)

Bloch oscillations = uniform motion in reciprocal space Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

Bloch oscillations = uniform motion in reciprocal space Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

Bloch oscillations = uniform motion in reciprocal space Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

Single Zener tunneling Double Zener tunneling Landau-Zener probability

Single Zener tunneling Double Zener tunneling Landau-Zener probability

Single Zener tunneling Double Zener tunneling Landau-Zener probability

Experiment Theory Laser intensities TB couplings Universal hamiltonian Laser intensities tune the anisotropy of the optical potential L.-K. Lim, J.-N. Fuchs, G.M., PRL,PRA (2013)

Combining probability amplitudes gives coheren t Coherent double Dirac cone  Interferences in reciprocal space E. Shimshoni, Y. Gefen, Ann. Phys. (1991) S. Gasparinetti et al. PRL (2011) L.-K. Lim, J.-N. Fuchs, G. M., PRL 112, (2014) Dynamical phase Geometrical phase

Back to condensed matter : Black phosphorus

Emergence of Dirac points under vertical strain ! Back to condensed matter : Black phosphorus

Black phosphorus Emergence of Dirac points under vertical strain ! J. Kim et al., Science 2015

Referee B The authors propose that merging of Dirac points might be possible with cold atoms in optical lattices. I think that it is a very long shot, given that the systems are yet to be realized experimentally. Referee C While the physical system is certainly interesting, its relevance to current experiments is rather tenuous… Merging of Dirac points in a 2D crystal G. M., F. Piéchon, J.N. Fuchs, M.O. Goerbig, Phys. Rev. B 80, (2009) It’s difficult to make predictions, especially about the future Bohr, Fermi, Einstein, Groucho Marx, Woody Allen, Confucius…

Conclusions and perspectives Universal description of motion and merging of Dirac points in 2D crystals Condensed matter : New thermodynamic and transport properties Interaction effects : from Dirac to Schrödinger Cold atoms : Landau-Zener probe of the Dirac points Interference effects, Berry phase effects New direction : coupled bands effects, orbital magnetism Photonic crystals (Segev et al., Technion) Polaritons in honeycomb semiconducting structures (J. Bloch, Marcoussis) Condensed matter (organic conductors, black phosphorus… )      

Jean-Noël Fuchs Frédéric Piéchon Petra Dietl Raphael De Gail Pierre Delplace Lih-King Lim Many thanks to Arnaud Raoux Mark Goerbig