Spaceborne Underwater Imaging 1 David J. Diner (JPL/CALTECH) John Martonchik (JPL/CALTECH) Yoav Y. Schechner (Technion, Israel) c Copyright 2011. All rights.

Slides:



Advertisements
Similar presentations
Characterisation of Aerosols over Indo- Gangetic Basin during Winter Season By Hiren Jethva Ph.D. Student Centre for Atmospheric & Oceanic Sciences Indian.
Advertisements

“Instant 3Descatter” Tali Treibitz and Yoav Y. Schechner CVPR
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Evaluating Calibration of MODIS Thermal Emissive Bands Using Infrared Atmospheric Sounding Interferometer Measurements Yonghong Li a, Aisheng Wu a, Xiaoxiong.
Satellite Derived Bathymetry Dr. Thomas Heege EOMAP, Germany
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
On Estimation of Soil Moisture & Snow Properties with SAR Jiancheng Shi Institute for Computational Earth System Science University of California, Santa.
P R I S M Portable Remote Imaging SpectroMeter Pantazis “Zakos” Mouroulis, JPL Robert Green, JPL Heidi Dierssen, Uconn Bo-Cai Gao, Marcos Montes, NRL.
AMwww.Remote-Sensing.info Ch.2 Remote Sensing Data Collection
Generalized Mosaics Yoav Y. Schechner, Shree Nayar Department of Computer Science Columbia University.
Liang APEIS Capacity Building Workshop on Integrated Environmental Monitoring of Asia-Pacific Region September 2002, Beijing,, China Atmospheric.
August 5 – 7, 2008NASA Habitats Workshop Optical Properties and Quantitative Remote Sensing of Kelp Forest and Seagrass Habitats Richard C. Zimmerman -
Multispectral Remote Sensing Systems
Quantifying aerosol direct radiative effect with MISR observations Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
Detector Configurations Used for Panchromatic, Multispectral and Hyperspectral Remote Sensing Jensen, 2000.
Polarization Surface-State Retrieval in the Presence of Atmospheric Perturbations Mentor: Dr. Carol Bruegge (JPL) By: Victor Chu.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Fundamentals of Satellite Remote Sensing NASA ARSET- AQ Introduction to Remote Sensing and Air Quality Applications Winter 2014 Webinar Series ARSET -
Shallow Water Bathymetry of Singapore’s Highly Turbid Coastal Waters: A Comparative Approach James F. Bramante, Durairaju Kumaran Raju, Sin Tsai Min Tropical.
Basic Principles of Light Polarization Lecture #17 Thanks to Yoav Schechner, Nayar, Larry Wolff.
Goal: To improve estimates of above- and belowground C pools in desert grasslands by providing more accurate maps of plant community type, canopy structural.
Progress report on work at the CHRIS-PROBA study site on Thorney Island, UK Ted Milton, University of Southampton, UK Karen Anderson, University of Exeter,
Satellite Remote Sensing of Aerosols
© Copyright Optech Incorporated. All rights reserved.
1 Atmospheric Radiation – Lecture 8 PHY Lecture 8 Radiative Transfer Band Models.
Spectral Requirements for Resolving Shallow Water Information Products W. Paul Bissett and David D. R. Kohler.
Liane Guild, Brad Lobitz, Randy Berthold, Jeremy Kerr Biospheric Science Branch, NASA Ames Research Center, CA Roy Armstrong, James Goodman, Yasmine Detres,
High Resolution MODIS Ocean Color Fred Patt 1, Bryan Franz 1, Gerhard Meister 2, P. Jeremy Werdell 3 NASA Ocean Biology Processing Group 1 Science Applications.
What are the four principal windows (by wavelength interval) open to effective remote sensing from above the atmosphere ? 1) Visible-Near IR ( );
J. Cho Department of Integrated Environmental Science Bethune-Cookman University Daytona Beach, FL.
Remote sensing of aerosol from the GOES-R Advanced Baseline Imager (ABI) Istvan Laszlo 1, Pubu Ciren 2, Hongqing Liu 2, Shobha Kondragunta 1, Xuepeng Zhao.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
1 Suborbital Science Program Airborne Remote Sensing of the SF Bay NASA Ames Research Center University of California Santa Cruz Airborne Science & Technology.
Polarimetric imaging of underwater targets
Maria Val Martin and J. Logan (Harvard Univ., USA) D. Nelson, C. Ichoku, R. Kahn and D. Diner (NASA, USA) S. Freitas (INPE, Brazil) F.-Y. Leung (Washington.
Estimating Water Optical Properties, Water Depth and Bottom Albedo Using High Resolution Satellite Imagery for Coastal Habitat Mapping S. C. Liew #, P.
Atmospheric Correction for Ocean Color Remote Sensing Geo 6011 Eric Kouba Oct 29, 2012.
Spectral classification of WorldView-2 multi-angle sequence Atlanta city-model derived from a WorldView-2 multi-sequence acquisition N. Longbotham, C.
Measurement of cirrus cloud optical properties as validation for aircraft- and satellite-based cloud studies Daniel H. DeSlover (Dave Turner, Ping Yang)
Wildfire Plume Injection Heights Over North America: An Analysis of MISR Observations Maria Val Martin and Jennifer A. Logan (Harvard Univ., USA) Fok-Yan.
NASA GISS 21-Nov-15 Carbonaceous Aerosol Workshop Page 1 How can satellites help define the history of carbonaceous aerosols in the industrial era. Acknowledgements:
Kelley Bostrom University of Connecticut NASA OCRT Meeting May 12, 2010.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Physics-Based Modeling of Coastal Waters Donald Z. Taylor RIT College of Imaging Science.
1 Ground-based Remote Sensing of Aerosols Pawan K Bhartia Laboratory for Atmospheres NASA Goddard Space Flight Center Maryland, USA.
Low Polarization Optical System Design Anna-Britt Mahler Polarization Laboratory Group College of Optical Sciences.
NASA ESTO ATIP Laser Sounder for Remotely Measuring Atmospheric CO 2 Concentrations 12/12/01 NASA Goddard - Laser Remote Sensing Branch 1 James B. Abshire,
R. T. Pinker, H. Wang, R. Hollmann, and H. Gadhavi Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland Use of.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Status of requirements definition for the ACE multiangle, multispectral, polarimetric imager David J. Diner ACE workshop Salt Lake City, UT 6-7 November.
NASA’s Coastal and Ocean Airborne Science Testbed (COAST) L. Guild 1 *, J. Dungan 1, M. Edwards 1, P. Russell 1, S. Hooker 2, J. Myers 3, J. Morrow 4,
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
We show how moderate resolution data from the Multiangle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System Terra satellite can be interpreted.
HYPERSPECTRAL IMAGING. nemo.nrl.navy.mil NEMO satellite COIS sensor instrument Navy Earth Map Observer Characterization of world littoral regions demonstrate.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Data acquisition From satellites with the MODIS instrument.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
RSG Vicarious Calibration Results and Automated Approach Jeffrey Czapla-Myers Remote Sensing Group ~ Optical Sciences Center University of Arizona Presented.
Global Characterization of X CO2 as Observed by the OCO (Orbiting Carbon Observatory) Instrument H. Boesch 1, B. Connor 2, B. Sen 1,3, G. C. Toon 1, C.
Instant Dehazing of Images using Polarization
Hyperspectral Sensing – Imaging Spectroscopy
Lunar observation data set preparation
Uncontrolled Modulation Imaging
NASA Aqua.
ERT 247 SENSOR & PLATFORM.
Using Sun Glint and Antarctic Ice Sheets to Calibrate MODIS and AVHRR Observations of Reflected Sunlight William R. Tahnk and James A. Coakley, Jr Cooperative.
Basic Principles of Light Polarization Lecture #17
Basic Principles of Light Polarization
Presentation transcript:

Spaceborne Underwater Imaging 1 David J. Diner (JPL/CALTECH) John Martonchik (JPL/CALTECH) Yoav Y. Schechner (Technion, Israel) c Copyright All rights reserved.

2 Importance : Coastal Areas * Most human activity: safety, archaeology, recreation * Biological activity * Aerosol retrieval * Hydrosol retrieval Schechner, Diner, Martonchik NASA

bottom 3 Schechner, Diner, Martonchik

bottom l obj UW 4 Schechner, Diner, Martonchik

bottom 5 Schechner, Diner, Martonchik l obj UW 0 1 z exp z 

bottom 6 Schechner, Diner, Martonchik l obj UW 0 1 z exp z    atmos

bottom l obj UW 7 Schechner, Diner, Martonchik 0 1 z z exp  cos -1 exp   atmos cos -1

0 1 z z exp  cos z z exp  cos -1 z exp  cos -1 z exp  cos -1 t water = 8 Schechner, Diner, Martonchik

bottom l obj UW 9 Schechner, Diner, Martonchik

10 Schechner, Diner, Martonchik

z exp  cos -1 z exp  cos -1 t water = t = Schechner, Diner, Martonchik

12 z Sun beam water atmosphere bottom l obj UW t water = 1- i Schechner, Diner, Martonchik

13 z Sun beam water atmosphere a l sky bottom i Schechner, Diner, Martonchik

14 z Sun beam water atmosphere a b bottom l obj UW i l sky Schechner, Diner, Martonchik

15 Schechner, Diner, Martonchik l obj UW z depth map Simulation

16 Schechner, Diner, Martonchik Simulation simulated view z depth map

17 atmosphere a bottom i deep l sky Schechner, Diner, Martonchik

18 a i deep i t water = 1- a l obj UW l sky Schechner, Diner, Martonchik

19 i deep i l obj UW - t water = 1- a a l sky Schechner, Diner, Martonchik

20 l obj UW i deep i(x)i(x) - z Schechner, Diner, Martonchik z (x)z (x) l obj UW ( x ) -  cos e t surface e   atmos cos

Dependence on 21 l obj UW i deep i(x)i(x) - l obj UW (x)(x) z Schechner, Diner, Martonchik  atmos z( x )  Two unknowns per pixel x * Object radiance (descattered) * Depth map

Dependence on 22 i deep i(x)i(x) - l obj UW (x)(x)  atmos z(x)z(x)  Multispectral Remote Bathymetry No object descattering Infer depth map z(x) from spectral ratios Impressive Vary with unknown object, media Lyzenga’78, Philpot’89, Stumpf & Holderied’03

23 l obj UW i deep i(x)i(x) - l obj UW (x)(x) z Schechner, Diner, Martonchik  atmos z(x)z(x)  Dependence on is unknown

water atmosphere bottom 24 Schechner, Diner, Martonchik z (x)z (x) l obj UW ( x ) -  cos e e   atmos cos

orbit N F N F water atmosphere bottom 25 Schechner, Diner, Martonchik Lightfield Cam

Multi-angle Imaging SpectroRadiometer (MISR) Res: 275 m Bands: 446, 558, 672, 866 nm Polar orbit on NASA’s Terra Dec’

27 Schechner, Diner, Martonchik Simulation simulated view at nadir z depth map

28 Schechner, Diner, Martonchik Simulation simulated view z depth map

29 Schechner, Diner, Martonchik Simulation z depth map l obj N estimated

30 Schechner, Diner, Martonchik z z true depth estimated depth [meters]

31 log t surface [ i(x ) – i ] deep sounding cos z (x ) sounding  slope Schechner, Diner, Martonchik assume the same? (x ) sounding Unknown l obj UW

Sparse soundings z (x ) sounding Known assumed unpolarized (x ) sounding Unknown l obj UW 32

T surface t atmosphere 33 deep i(x) – i = l obj UW ( x ) - z (x)z (x) cos e  u q T surface u q - - pol independent of x Schechner, Diner, Martonchik

8 Spectral bands, three of which are polarimetric Multiangle SpectroPolarimetric Imager (MSPI) Airborne camera (AirMSPI) In nose of NASA ER-2 high-altitude aircraft 34

35 Spaceborne Underwater Imaging Yoav Schechner, David Diner, John Martonchik