Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹
1. Introduction
1-1. topology of delta potential Dirichlet condition = + Berry phase
(TC, Phys. Lett. A 248, 285 (1998)) 1-2. delta potential in quantum well Does N body delta potential system have “Anholonomy” ? Berry phase Quantum holonomy or Anholonomy
1-3. Plan 1. Introduction 2. Lieb-Liniger model 3. Bethe equation 4. anholonomy of spectrum 5. Example 6. Conclusion
2. Lieb-Liniger model
2-1. Definition Quantum many body system on circle Bosonic system E. H. Lieb et al., Phys. Rev. 130 (1963) periodic boundary conditions
2-2 Connection to field theory N particle state Basis: Linear combination: Commutation relation: Vaccum: Non-Linear-Schrodinger Equation Eigenstate Heisenberg rep.
3. Bethe equation
3-1. Bethe equation
3-2. Two Bethe equation continuous at discontinuous at We need two chart at least.
4. anholonomy of spectrum
4-1 Super Tonks Girardeau state Ground state for: Tonks Girardeau state Ground state for : Super Tonks Girardeau state Continuous transition Experiment E. Haller et. al., Science 325 (2009) 1224
4-2. calculation of anholonomy 1
4-3. Calculation of anholonomy
4-4. summary Total
5. Example
5.1 N=2 (0,0) (-1,1) (-2,2) (-3,3) (0,1) (-1,2) (-2,3)
5.2 N=3 (0,0,0) (-2,0,2) (-4,0,4) (0,0,1) (-2,0,3) (-4,0,5) (-1,0,1) (-3,0,3) (-5,0,5)
6. Conclusion Quasi-momenta: Difference of quasi-momenta: Initial state Final state ≠ cf. Berry phase New example in Many body system Anholonomy
3-2 Limit of g to +∞ is real when g > 0. if x is real.
2-2 Limit of g to 0
2-2 Connection to field theory
4.3 N=4 (0,0,0,0) (-2,-1,1,2) (-4,-2,2,4) (-1,-1,1,1) (-4,-1,1,4) (-7,-2,2,7) (-1,0,0,1) (-4,-2,2,4) (-7,-3,3,7)