Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹.

Slides:



Advertisements
Similar presentations
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Advertisements

三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
電気的に励起された 岩田順敬 ( 東大理 ) Cedric Simenel (CEA/Saclay) 原子核の時間発展 Thanks to: 大塚孝治 ( 東大理、東大 CNS 、理研 ) Michael Bender (CEA/Saclay)
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
Quantum Theory of Solids
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
1 Eniko Madarassy Reconnections and Turbulence in atomic BEC with C. F. Barenghi Durham University, 2006.
Hard Photon Production in a Chemically Equilibrating QGP at Finite Baryon Density Zejun He Zejun He Shanghai Institute of Applied Physics Research Chinese.
Non-equilibrium dynamics in the Dicke model Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economics
第十四届全国核结构大会暨第十次全国核结构专题讨论会 浙江 · 湖州 · Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation 李增花 复旦大学核科学与技术系(现代物理研究所)
Nucleon-pair transfer-intensities nuclear shape-phase transitions
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Physics 452 Quantum mechanics II Winter 2011 Instructor: Karine Chesnel.
Random Field Ising Model on Small-World Networks Seung Woo Son, Hawoong Jeong 1 and Jae Dong Noh 2 1 Dept. Physics, Korea Advanced Institute Science and.
Microphase Separation of Complex Block Copolymers 复杂嵌段共聚高分子的微相分离 Feng Qiu ( 邱 枫 ) Dept. of Macromolecular Science Fudan University Shanghai, , CHINA.
6. Second Quantization and Quantum Field Theory
System and definitions In harmonic trap (ideal): er.
Michiel Snoek September 21, 2011 FINESS 2011 Heidelberg Rigorous mean-field dynamics of lattice bosons: Quenches from the Mott insulator Quenches from.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Variational Approach to Non- Equilibrium Gluodynamics 東京大学大学院 総合文化研究科 西山陽大.
Photon angular momentum and geometric gauge Margaret Hawton, Lakehead University Thunder Bay, Ontario, Canada William Baylis, U. of Windsor, Canada.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Introduction to fractional quantum Hall effect Milica V. Milovanović Institute of Physics Belgrade Scientific Computing Laboratory (Talk at Physics Faculty,
Less is more and more is different. Jorn Mossel University of Amsterdam, ITFA Supervisor: Jean-Sébastien Caux.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Noncommutative Quantum Mechanics Catarina Bastos IBERICOS, Madrid 16th-17th April 2009 C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49.
General proof of the entropy principle for self-gravitating fluid in static spacetimes 高思杰 (Gao Sijie) 北京师范大学 (Beijing Normal University)
Random walks in complex networks 第六届全国网络科学论坛与第二届全国混沌应用研讨会 章 忠 志 复旦大学计算科学技术学院 Homepage:
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Fermi-Luttinger Liquid Michael Pustilnik, Georgia Tech
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
General proof of the entropy principle for self-gravitating fluid in static spacetimes 高思杰 北京师范大学 (Beijing Normal University) Cooperated with 房熊俊
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
VERSITET NIKOLAJ THOMAS ZINNER DEPARTMENT OF PHYSICS AND ASTRONOMY AARHUS UNIVERSITET OCTOBER UNI STRONGLY INTERACTING QUANTUM PARTICLES IN ONE.
Acceleration of Cosmic Rays in a System of Rotating Stars 朱 光 华 (Chu, Kwang-Hua ) 内蒙古科技大学 数学物理科学与生物工程学院 (包头市) School of Mathematics, Physics and Biological.
Optically Trapped Low-Dimensional Bose Gases in Random Environment
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
HERMES による 重陽子のスピン依存構造関数 g 1 および テンソル偏極構造関数 b 1 の測定 東工大 柴田利明、今津義充、小林知洋、長谷川大樹、宮地義之、 他 HERMES Collaboration Mar 28, 2006 at Matsuyama.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Nflation: observational predictions from the random matrix mass spectrum SAK and Andrew R. Liddle 76 Phys. Rev. D 76, , 2007, arXiv:
String excitations in quantum antiferromagnets and photoelectron spectroscopy E. Manousakis Physics Department, Florida State University and Physics Department,
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
Density Functional Theory and the LAPW method with Applications Andrew Nicholson Solid State Physics II Spring 2009 (Elbio Dagotto) Brought to you by:
第9届QCD相变和重离子碰撞物理研讨会,杭州
Quantum Phase Transition of Light: A Renormalization Group Study
Chiral phase transition in magnetic field
הוראת מיומנויות של עבודה בקבוצה מחקר פעולה
tight binding計算によるペロブスカイト型酸化物薄膜のARPESの解析
Quantum mechanics II Winter 2011
Supersymmetric Quantum Mechanics
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
量子情報処理にむけての クラスター変分法と確率伝搬法の定式化
Department of Physics, Fudan University, Shanghai, China
Some aspects of 1D Bose gases
Effect of equilibrium phase transition on multiphase transport in relativistic heavy ion collisions 喻 梅 凌 华中师范大学粒子物理研究所 2019/2/24 第十届全国粒子物理大会 桂林.
Chengfu Mu, Peking University
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Based on Phys. Lett. B 765, 226 (2017) Collaborated with Li You
Unit 1 Representing Real Numbers
LECTURE 15.
Two atoms in a double well: Exact solution with a Bethe ansatz
郑 公 平 河南师范大学 第五届全国冷原子物理和量子信息青年学者学术讨论会
Stability of g- and s-bands in 182Os in three-dimensional cranked HFB
Department of Physics, Fudan University, Shanghai , China
Presentation transcript:

Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹

1. Introduction

1-1. topology of delta potential Dirichlet condition = + Berry phase

(TC, Phys. Lett. A 248, 285 (1998)) 1-2. delta potential in quantum well Does N body delta potential system have “Anholonomy” ? Berry phase Quantum holonomy or Anholonomy

1-3. Plan 1. Introduction 2. Lieb-Liniger model 3. Bethe equation 4. anholonomy of spectrum 5. Example 6. Conclusion

2. Lieb-Liniger model

2-1. Definition Quantum many body system on circle Bosonic system E. H. Lieb et al., Phys. Rev. 130 (1963) periodic boundary conditions

2-2 Connection to field theory N particle state Basis: Linear combination: Commutation relation: Vaccum: Non-Linear-Schrodinger Equation Eigenstate Heisenberg rep.

3. Bethe equation

3-1. Bethe equation

3-2. Two Bethe equation continuous at discontinuous at We need two chart at least.

4. anholonomy of spectrum

4-1 Super Tonks Girardeau state Ground state for: Tonks Girardeau state Ground state for : Super Tonks Girardeau state Continuous transition Experiment E. Haller et. al., Science 325 (2009) 1224

4-2. calculation of anholonomy 1

4-3. Calculation of anholonomy

4-4. summary Total

5. Example

5.1 N=2 (0,0) (-1,1) (-2,2) (-3,3) (0,1) (-1,2) (-2,3)

5.2 N=3 (0,0,0) (-2,0,2) (-4,0,4) (0,0,1) (-2,0,3) (-4,0,5) (-1,0,1) (-3,0,3) (-5,0,5)

6. Conclusion Quasi-momenta: Difference of quasi-momenta: Initial state Final state ≠ cf. Berry phase New example in Many body system Anholonomy

3-2 Limit of g to +∞ is real when g > 0. if x is real.

2-2 Limit of g to 0

2-2 Connection to field theory

4.3 N=4 (0,0,0,0) (-2,-1,1,2) (-4,-2,2,4) (-1,-1,1,1) (-4,-1,1,4) (-7,-2,2,7) (-1,0,0,1) (-4,-2,2,4) (-7,-3,3,7)