Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing.

Slides:



Advertisements
Similar presentations
The Neutron Star Equation of State- Electromagnetic Observations Frits Paerels Columbia University GWPAW, UW Milwaukee, January 26, 2011.
Advertisements

Weighing in on Neutron Stars Varun Bhalerao California Institute of Technology Collaborators: F. Harrison, S. Kulkarni, Marten van Kerkwijk, and others.
Neutron Star masses and radii. NS Masses Stellar masses are directly measured only in binary systems Accurate NS mass determination for PSRs in relativistic.
Discovery of a Highly Eccentric Binary Millisecond Pulsar in a Gamma-Ray- Detected Globular Cluster Megan DeCesar (UWM) In collaboration with Scott Ransom.
Gabriel Török 3:2 ratio in NS X-ray observations: summary of recent progress The presentation draws mainly from the collaboration with M.A. Abramowicz,
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Quark Stars Kyle Dolan Astronomy December 2007 NASA/Dane Berry.
Stellar Deaths II Neutron Stars and Black Holes 17.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Internal structure of Neutron Stars. Artistic view.
Gravitationally Redshifted Absorption Lines in the X-Ray Burst Spectra NTHU Lu, Ting-Ni.
Low Mass X-ray Binaries and Accreting Millisecond Pulsars A. Patruno R. Wijnands R. Wijnands M. van der Klis M. van der Klis P. Casella D. Altamirano D.
Hadrons in Neutron Stars Debades Bandyopadhyay Center for Astroparticle Physics Saha Institute of Nuclear Physics, Kolkata, India. Collaborators: Sarmistha.
Beyond Einstein: From the Big Bang to Black Holes Neutron Star Fundamental Physics with Constellation-X  ~ 1 x g cm.
Pulsars in Low-Mass X-Ray Binaries Deepto Chakrabarty Massachusetts Institute of Technology.
Using Observables in LMXBs to Constrain the Nature of Pulsar Dong, Zhe & Xu, Ren-Xin Peking University Sep. 16 th 2006.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 6.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Accreting Neutron Stars, Equations of State, and Gravitational Waves C. B. Markwardt NASA/GSFC and U. Maryland.
Simulation of the Recycled Pulsar Evolution Pan Yuanyue, Wang Na and Zhang Chengmin, Xinjiang Astronomical Observatory, CAS, Urumqi, China National Astronomical.
Constraining Neutron Star Radii and Equations of State Josh Grindlay Harvard (collaboration with Slavko Bogdanov McGill Univ.)
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
Correlations Between the Twin kHz QPO Frequencies in Neutron Star Low-Mass X-ray Binaries 尹红星 张承民 NAOC, CAS April 22th, 2006.
Neutron Star (Mostly Pulsar) Masses Ingrid Stairs UBC Vancouver CAWONAPS TRIUMF Dec. 9, 2010.
Internal structure of Neutron Stars. Artistic view.
A toy model for HFQPOs in XRBs Ye Yong-Chun ( 叶永春 ), Wang Ding-Xiong( 汪定雄 ) Department of Physics, Huazhong University of Science and Technology, Wuhan,
Gabriel Török* Relating high-frequency QPOs and neutron-star EOS *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation 张承民, 尹红星 National.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA –Saclay Collaborators: J. Poutanen, L. Kuipers,
Internal structure of Neutron Stars. Artistic view.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
1 ACCRETING X-RAY MILLISECOND PULSARS M A U R I Z I O F A L A N G A & E R I N W. B O N N I N G NS day, ParisJune 27, 2007 Service d‘Astrophysique, CEA.
Timing and Spectral Properties of Neutron Star Low-Mass X-ray Binaries Sudip Bhattacharyya Department of Astronomy and Astrophysics Tata Institute of Fundamental.
Millisecond Pulsar and kHz QPOs of LMXB Chengmin ZHANG, NAOC 2011 – NAOC Collaborators: J. Wang, L.M. Song, Y.J. Lei, F. Zhang.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Merger of binary neutron stars in general relativity M. Shibata (U. Tokyo) Jan 19, 2007 at U. Tokyo.
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
A physical interpretation of variability in X-ray binaries Adam Ingram Chris Done P Chris Fragile Durham University.
Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Probing the neutron star physics with accreting neutron stars (part 2) Alessandro Patruno University of Amsterdam The Netherlands.
Radiation Properties of Magnetized Neutron Stars. RBS 1223
Accreting Neutron Stars – tiny Galactic Powerhouses HWWS, July 2010, Woodfield Centre Duncan Galloway Monash University
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Timing Features of XTE J in 2003 March outburst Fan Zhang et al. (astro-ph/ ) --Possible Evidence for Accreting Blobs.
Observations and physics of accreting neutron star ISSI, Bern, Switzerland December 3-7, 2007.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
In this lecture we look at: 1) Neutron stars in x-ray binaries 2) Mass-radius relationship 3) Strange star candidates 4) Quark deconfinement at T=0 5)
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Abbas Askar University of Belgrade 12 th November 2011 Astronomy Workshop Presentation Belgrade, Serbia.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
Sleuthing the Isolated Compact Stars Jeremy Drake Smithsonian Astrophysical Observatory Compact Stars: Quest for New States of Dense Matter.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Genetic Selection of Neutron Star Structure Matching the X-Ray Observations Speaker: Petr Cermak The Institute of Computer Science Silesian University.
To find strange star with FAST R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University ( ) Frontiers in Radio Astronomy.
When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.
kHz QPOs of LMXBs Constrains on Pulsar Parameters Chengmin Zhang & Hongxing Yin National Astronomical Observatories, Beijing.
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories,
Renxin Xu ( 徐仁新 ) School of Physics, Peking University ( ) “2015 China-New Zealand Joint SKA Summer School” Aug. 19, 2015; Kunming, China Pulsars as probes.
Eccentric Binary Millisecond Pulsars Paulo C. C. Freire arXiv: v1.
MERGING REVEALS Neutron Star INNARDS
General Relativity in X-ray Astronomy Astrosat and Future Experiments
Internal structure of Neutron Stars
Lecture1. Structure of Neutron Stars
Neutron Star masses.
Lecture1. Structure of Neutron Stars
Presentation transcript:

Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing

Significance of Measuring Star mass and radius – Neutron or Quark  we can measure physical parameters of star, mass and radius, probe the nuclear physics and understand EOS  we can study the strong gravitational field, where Einstein GR might be tested

Neutron Stars ? (Stairs 2004) (MT77) (Lattimer & Prakash 2004 , 2006) 40+ NSs, M=1.4 M ⊙, R= km ? Radio pulsars, X-ray NS, binary systems

NS mass determined in Binary system MSP, PSR J , M = 2.1(2) M ⊙ ?; Nice et al A , M> M ⊙ ; Jonker et al 2003 ; ( 1.74 M ⊙ , 2008 ) DNS: M=1.25M ⊙, M=1.34 M ⊙, double pulsars (2004)

PSR J A/B Post-Keplerian Effects R: Mass ratio  : periastron advance  : gravitational redshift r & s: Shapiro delay P b : orbit decay (Kramer et al. 2005).. Six measured parameters – only two independent Fully consistent with general relativity (0.1%) A: 1.34 M ⊙ ; B: 1.25 M ⊙

Measured M-R relations Apparent Radius: R ∞ =R/(1-R s /R) 1/2 Gravitational redshift: z=(1-R s /R) -1/2 -1 Mass density: M/R 3 g=~M/R 2 1E , Aql X-1 and EXO Rs=2GM: Schwarzschild radius No direct measure of radius !

Photon Spectra: Key to Measuring Radius For perfect Black Body: Observed Total Flux: F = 4  R ∞ 2  SB T ∞ 4 /d 2 Spectra are seldom black body: Neutron Stars have atmospheres ! Composition and Magnetic field shape the spectra. Other issues: Is the surface temperature and radiation isotropic ? RX J (Fred Walter’s Star !)

The Mass-Radius Gravitational Red-shift: observation of spectral lines (Cottam, et al 2002). QPOs indicate ISCO Exotic Stars

Typical twin kHz QPOs ( 24/35 ) Z: Sco x-1, van der Klis et al 2006 Separation ~300 Hz ~Spin ? Typically: Twin KHz QPO Upper ν 2 ~ 1000 (Hz) Lower ν 1 ~ 700 (Hz) Twin 21/27 sources ; ~290

Constrain star M_R by kHz QPOs Inner boundary to emit kHz QPO: ISCO, R > MAX M, R M<2.2 M ⊙ (1kHz/freq) R<19.5 km (1kHz/freq) M/R 3 relation known by model for twin kHz QPOs SAXJ : M/R 3 by Burderi & King 1998

kHz QPOs from LMXBs: R-ISCO kHz QPO maximum frequency constrains NS equations of state Excluded Sco X-1

Striking case of RX J Truempet et al. 2004; Burwitz et al  Apparent radius R ∞ =16.5 km (d/117pc), Truempet 2005  True radius 14 km (1.4 M ⊙ ), stiff EOS, rule out quark star (Pons et al, 2002; Walter & Lattimer, 2002 ) This is an isolated neutron star (INS), valuable because: We can see the surface There are minimal magnetospheric complications If we can see the surface, we can determine the angular diameter The parallax gives the radius R spectral lines give the surface composition, T, and g R and g give M M/R constrains the EOS of matter at nuclear densities Gravitational light bending effect: R/M <~10 km/M ⊙ ; Ransom et al 2004

Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν 2 = ν kepler ν 1 = ν precession = ν 2 [1 – (1 – 3Rs/r) 1/2 ] ∆ν = ν 2 - ν 1 is not constant ISCO Saturation Relativistic precession model by Stella & Vietri 1999 M inferred from twin kHz QPOs Max frequency – ISCO

M/R 3 inferred from twin kHz QPOs Max frequency – Star Surface R Kepler frequency ν k = (GM/4 π 2 r 3 ) 0.5 ν k = 1850 (Hz) A X 3/2 ν 1 = ν 2 X (1- (1-X) 1/2 ) 1/2 A 2 =m/R 6 3; X=R/r, m=M/M ⊙, R 6 = R/10 6 cm Zhang 2004, AA; Li & Zhang 2005 Maximum kHz QPO occurs at R or ISCO=3Rs A> ν k /1850 (Hz) and m < 2200 (Hz)/ ν k Miller et al 1998

Constraining M – R by R ∞ and z 1E : R ∞ =4.6 km, Bignami et al 2004 z= ; Sanwal et al 2002 ? R 6 =R ∞6 /(1+z) M=f(z)R ∞6 /(1+z) F(z)=(20/3)z(1+z/2)/(1+z) 2

Constraining M – R by R ∞ and A~M/R 3 Aql X-1 : 9 km<R ∞ <18 km, Rutledge et al 2001 one kHz QPO: 1040 Hz; van der Klis 2006 R 6 =R ∞6 /(1+0.15(A/0.7) 2 R 2 ∞6 ) 0.5 m=AR 3 6

Constraining M – R by A=M/R^3 and z EXo : z=0.35; Cottam et al 2002 One kHz QPO 695 Hz; Homan & van der Klis 2000 R 6 =1.43f 0.5 (z)(0.7/A) m=1.43f 1.5 (z)(0.7/A) f(z)=(20/3)z(1+z/2)/(1+z) 2

1E , Apparent radius, gravitational redshift QUARK STAR ?

Aql X-1, Apparent radius=14 km, single kHz QPO

EXO , gravitational redshift, kHz QPO

Mass-Radius relations Apparent Radius: R ∞ =R/(1-R s /R) 1/2 Haensel 2001 Gravitational redshift: z=(1-R s /R) -1/2 -1 Cottam et al 2003, z=0.35 Mass density: M/R 3 (by kHz QPOs) Zhang E , Aql X-1 and EXO Rs=2GM: Schwarzschild radius Measuring NS Mass & Radius by kHz QPO, gravitational redshift and apparent radius

Measuring STAR Mass-Radius by kHz QPO, gravitational redshift and apparent radius CN1/CN2: normal neutron matter, CS1/CS2: quark star CPC: Bose-Einstein condensate of pions Zhang, Yin, Li, Xu, Zhang B, 2007 AqlX-1 , EXO Samples

How about the Sub-millisecond Pulsar XTE J , spin=1122 Hz Spin=1122 Hz Radio PSR, 716 Hz Quark Star, FAST target Cheng et al 1998, Li 1999; Xu, Qiao, Wang 2002 Horvath 2002 Harko, 2005 Zhang,..Li, 2007 More……

ISCO condition, m ≤ 2200 (Hz)/spin Keplerian at R, crust split

Zhang et al Max kHz QPO 1330 Hz Cir X-1 difference Ratio

Spin Frequency - LMXBs 23 Spin sources, Av ~ 400 Hz Radio MSP : Max Spin=716 Hz Spin frequency: Max: 1122 Hz, Kaaret et al 2007 Min: 45 Hz Villarreal & Strohmayer 2004

kHz QPO & spin relation

List of the Low-Mass X-Ray Binaries Simultaneously Detected Twin Kilohertz QPO and Spin Frequencies QPO (Hz) spin Dnu/spin 4U – U – U U – KS U – XTE J – SAX J QPO data, Belloni et al. (2005), van der Klis (2006)

Fastest Pulsar XTE J spin = 1122 Hz M – R Kaaret et al Quark Star ? Quark Star = sub-MSP ?

Summary THANKS Conclusions: M-R relations 1.Mass, measured 2.Radius, not measured directly 3.Spectra, MR relation 4.Redshift, M/R 5.kHz QPO, M/R^3, constraints 6.Others… Ozel 2006 Not clear: fuzzy in M-R EOS: Quark or Neutron ?

Saturation of kHz QPO frequency ? ISCO – Star Mass 4U , NASA Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface