Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Intro to Acids & Bases.
Advertisements

Acid-Base Equilibrium
Acids and Bases Entry Task: Jan 29 th Tuesday What is the [H+] and [OH-] of a solution with a pH of 4.67? You have 5 minutes!
1 Acid-Base Properties of a Salt Solution  One of the successes of the Brønsted- Lowry concept of acids and bases was in pointing out that some ions can.
Acids and Bases Section 18.1: Calculations involving Acids and Bases Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
1 Acids and Bases. 2 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce.
Acids and Bases Chapter and Br Ø nstead Acids and Br Ø nstead Bases Recall from chapter 4: Recall from chapter 4: –Br Ø nstead Acid-
Copyright McGraw-Hill Chapter 16 Acids and Bases Insert picture from First page of chapter.
Acid-Base Equilibria Chapter 16. HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq)
Acid-Base Equilibria Chapter 16.
Acids and Bases Chapter 15
Acid-Base Equilibria Chapter 16. Acids 1.Have a sour taste. e.g., Vinegar, lemons, limes, sour milk 2.Cause litmus to change from blue to red. 4. Acid.
Acid-Base Equilibria pH and pOH Relationship of Conjugate Pair acid-base strength. When acids or bases control pH:  determine K  predict pH When pH controls.
Acids and Bases Section 8.4: K w and the pH scale Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Titrations.
Acid/Base Chemical Equilibria. The Brønsted Definitions  Brønsted Acid  proton donor  Brønsted Base  proton acceptor  Conjugate acid - base pair.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
1 The Chemistry of Acids and Bases –Finding pH and pOH.
Acids and Bases Chapter Copyright © by Houghton Mifflin Company. All rights reserved. 16 Concept of Acids and Bases According to the Arrhenius concept.
Acid and Base Equilibrium. Some Properties of Acids Produce H 3 O + ions in water (the hydronium ion is a hydrogen ion attached to a water molecule) Taste.
HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount.
Weak Acids & Weak Bases. Review Try the next two questions to see what you remember Try the next two questions to see what you remember.
THE CHEMISTRY OF ACIDS AND BASES. ACID AND BASES.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Definition of Acids Arrhenius acid: A substance that releases H + in water ( e.g. HCl) H + + H 2 O  H 3 O + Hydronium.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 14 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
CHM 112 Summer 2007 M. Prushan Chapter 15 Aqueous Equilibrium – Acids and Bases.
Acids and Bases Acids and bases Acid-base properties of water (K w ) pH scale Strength of Acids and Bases Weak acid (K a ) Weak base (K b ) Relation between.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 7 Acids and Bases. Arrhenius Definitions - Acids produce hydrogen ion in aqueous, and bases produce hydroxide ions. Brønsted-Lowry Definitions.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Midterms marked; solutions are posted Assignment 03 is in the box Assignment 04 is up on ACME and is due Mon., Feb. 26 (in class)

Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity. A nonelectrolyte is a substance that,
Acids and Bases Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ACIDS AND BASES ACID – A compound that produces hydrogen ions in a water solution HCl (g) → H + (aq) + Cl - (aq) BASE – A compound that produces hydroxide.
Chapter 15 Acids and Bases. What are acids and bases?Learned in Chem 1211 Acid: gives H + in aqueous solution HCl(aq)  H + (aq) + Cl − (aq) Base: gives.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
BASE IONIZATION Section 8.3. Base-Ionization Constant - K b ■The following equation represents a weak base, B, dissolving in water: ■B (aq) + H 2 O (l)
Chapter Fifteen Acids and Bases. Chapter Fifteen/ Acids and Bases acids is a substances that ionize in water to produce H + ions HCl (aq) → H + (aq) +
Definitions of acids and bases 15.1 Brønsted Acids and Bases Brønsted acid is a substance capable of donating a proton, and a Brønsted base is a substance.
University Chemistry Chapter 11: Acids and Bases Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
PH Calculations.
Acids and Bases Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Chapter 11: Acids and Bases
Chapter Fifteen Stopped here Acids and Bases.
Chemistry 1011 TOPIC TEXT REFERENCE Acids and Bases
Acids and Bases.
The Chemistry of Acids and Bases
Calculating Concentration
Acids and Bases Chapter 16.
Calculating Concentration
Acids and Bases Chapter 15
15.4 What is the pH of a 2 x 10-3 M HNO3 solution?
ACIDS and BASES.
Acids and Bases.
Acids & Bases.
Intro to Acids & Bases.
Presentation transcript:

Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 15 Semester 1/ Bronsted Acids and Bases 15.2 The Acid-Base Properties of Water 15.3 pH-A measure of Acidity 15.5 Weak Acids and Acid Ionization Constants 15.6 Weak Bases and Base Ionization Constants

15.1 Bronsted Acids and Bases A Brønsted acid is a proton donor A Brønsted base is a proton acceptor acidbaseacidbase 15.1 acid conjugate base base conjugate acid

O H H+ O H H O H HH O H - + [] The Acid-Base Properties of Water H 2 O (l) H + (aq) + OH - (aq) H 2 O + H 2 O H 3 O + + OH - acid conjugate base base conjugate acid 15.2 autoionization of water

H 2 O (l) H + (aq) + OH - (aq) The Ion Product of Water K c = [H + ][OH - ] [H 2 O] [H 2 O] = constant K c [H 2 O] = K w = [H + ][OH - ] The ion-product constant (K w ) is the product of the molar concentrations of H + and OH - ions at a particular temperature. At 25 0 C K w = [H + ][OH - ] = 1.0 x [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic 15.2

What is the concentration of OH - ions in a HCl solution whose hydrogen ion concentration is 1.3 M? K w = [H + ][OH - ] = 1.0 x [H + ] = 1.3 M [OH - ] = KwKw [H + ] 1 x = = 7.7 x M 15.2

15.3 pH – A Measure of Acidity pH = - log [H + ] [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic [H + ] = 1 x [H + ] > 1 x [H + ] < 1 x pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ] 15.3

pOH = -log [OH - ] [H + ][OH - ] = K w = 1.0 x log [H + ] – log [OH - ] = pH + pOH = 14.00

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was What is the H + ion concentration of the rainwater? pH = - log [H + ] [H + ] = 10 -pH = = 1.5 x M The OH - ion concentration of a blood sample is 2.5 x M. What is the pH of the blood? pH + pOH = pOH = -log [OH - ]= -log (2.5 x )= 6.60 pH = – pOH = – 6.60 =

HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) 15.5 Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq) K a = [H + ][A - ] [HA] K a is the acid ionization constant KaKa weak acid strength 15.5

What is the pH of a 0.5 M HF solution (at 25 0 C)? HF (aq) H + (aq) + F - (aq) K a = [H + ][F - ] [HF] = 7.1 x HF (aq) H + (aq) + F - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx K a = x2x x = 7.1 x Ka  Ka  x2x = 7.1 x – x  0.50 K a << 1 x 2 = 3.55 x x = M [H + ] = [F - ] = M pH = -log [H + ] = 1.72 [HF] = 0.50 – x = 0.48 M 15.5

When can I use the approximation? 0.50 – x  0.50 K a << 1 When x is less than 5% of the value from which it is subtracted. x = M 0.50 M x 100% = 3.8% Less than 5% Approximation ok. What is the pH of a 0.05 M HF solution (at 25 0 C)? Ka  Ka  x2x = 7.1 x x = M M 0.05 M x 100% = 12% More than 5% Approximation not ok. Must solve for x exactly using quadratic equation or method of successive approximation. 15.5

Solving weak acid ionization problems: 1.Identify the major species that can affect the pH. In most cases, you can ignore the autoionization of water. Ignore [OH - ] because it is determined by [H + ]. 2.Use ICE to express the equilibrium concentrations in terms of single unknown x. 3.Write K a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly. 4.Calculate concentrations of all species and/or pH of the solution. 15.5

What is the pH of a M monoprotic acid whose K a is 5.7 x ? HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx K a = x2x x = 5.7 x Ka  Ka  x2x = 5.7 x – x  K a << 1 x 2 = 6.95 x x = M M M x 100% = 6.8% More than 5% Approximation not ok. 15.5

K a = x2x x = 5.7 x x x – 6.95 x = 0 ax 2 + bx + c =0 -b ± b 2 – 4ac  2a2a x = x = x = HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) x-x+x+x x x+x xx [H + ] = x = M pH = -log[H + ] =

percent ionization = Ionized acid concentration at equilibrium Initial concentration of acid x 100% For a monoprotic acid HA Percent ionization = [H + ] [HA] 0 x 100% [HA] 0 = initial concentration 15.5

NH 3 (aq) + H 2 O (l) NH 4 + (aq) + OH - (aq) 15.6 Weak Bases and Base Ionization Constants K b = [NH 4 + ][OH - ] [NH 3 ] K b is the base ionization constant KbKb weak base strength 15.6 Solve weak base problems like weak acids except solve for [OH-] instead of [H + ].Solve for pOH instead of pH.