A New Perspective on Galaxy Outflows Glenn Kacprzak Kutching - Sept. 19 th 2014 N. Bouché (IRAP) C. Churchill (NMSU) J. Cooke (Swinburne) S. Ho (UCSB)

Slides:



Advertisements
Similar presentations
Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Advertisements

Feedback: in the form of outflow. AGN driven outflow.
X Y i M82 Blue: Chandra Red: Spitzer Green & Orange: Hubble Face-on i = 0 Edge-on i = 90 Absorption-line probes of the prevalence and properties of outflows.
The Self-Similarity of Galactic Gaseous Halos: Clues to the Evolution of Galaxies Chris Churchill New Mexico State University Collaborators: Nikki Nielsen.
HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
Mapping HI absorption at z=0.026 against a resolved background CSO Andy Biggs, Martin Zwaan, Jochen Liske European Southern Observatory Frank Briggs Australian.
Multi-frequency radio observations of BAL quasar Magdalena Kunert-Bajraszewska Toruń Centre for Astronomy, N. Copernicus University.
X-ray Absorbing Outflows Astro 597: High Energy Astrophysics September 27, 2004 Brendan Miller.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Observations of Molecular Outflows in Quasars Anna Boehle March 2 nd, 2012.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Simulations of Reionization- Epoch Galaxies Romeel Davé (Arizona) Kristian Finlator, Ben D. Oppenheimer.
C. Churchill (NMSU) D. Ceverino (NMSU) A. Klypin (NMSU) C. Steidel (Caltech) M. Murphy (Swinburne) N. Vogt (NMSU) Glenn G. Kacprzak (NMSU / Swinburne)
Mg II & C IV Absorption Kinematics vs. Stellar Kinematics in Galaxies Chris Churchill (Penn State) J. Charlton J. Ding J. Masiero D. Schneider M. Dickinson.
Rand (2000) NGC 5775 Hα map. D = 24.8 Mpc It is an interacting galaxy.
Feedback from Momentum-Driven Winds Eliot Quataert (UC Berkeley) w/ Norm Murray & Todd Thompson NGC 3079 w/ HST.
How Do Supermassive Black Holes Get Starved? Q. D. Wang, Z. Y. Li, S.-K. Tang University of Massachusetts B. Wakker University of Wisconsin.
CDM cusps in LSB galaxies by means of stellar kinematics A.Pizzella, E.M.Corsini, F. Bertola Università di Padova And J. Magorrian, M. Sarzi University.
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
Quasar Absorption Lines Tracing Cosmic Structure Growth & Galaxy Evolution Over Cosmic Time.
Galaxy Properties and the Kinematics of Gaseous Halos Chris Churchill (NMSU) Glenn Kacprzak (NMSU) Chuck Steidel (Caltech) also see: Poster (G.
1 High-z galaxy masses from spectroastrometry Alessio Gnerucci Department of Physics and Astronomy University of Florence 13/12/2009- Obergurgl Collaborators:
Lick index system definition at the RSS/SALT A.Y. Kniazev (SALT/SAAO), O.K. Sil’chenko (SAI MSU)
Galaxy Formation and Evolution Chris Brook Modulo 15 Room 509
8th Sino-German Workshop Kunming, Feb 23-28, 2009 Milky Way vs. M31: a Tale of Two Disks Jinliang HOU In collaboration with : Ruixiang CHANG, Shiyin SHEN,
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) UC Riverside Astronomy Talk January 27, 2012.
Probing AGN Outflows with Variability Smita Mathur Ohio State Collaborators: Yair Krongold, Fabrizio Nicastro, Anjali Gupta Nancy Brickhouse, Martin Elvis.
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Galaxy Wind IGM Enrichment from Star Forming Galaxies: 1
Central Engine of AGN Xi’ian October 2006 Black Hole Mass Measurements with Adaptive Optic Assisted 3D-Spectroscopy Courtesy ESO Guia Pastorini Osservatorio.
Linking Galaxies’ Gas Content to their Metallicity Gradients Sean Moran Johns Hopkins University & The GASS Team.
Martin et al. Goal-determine the evolution of the IRX and extinction and relate to evolution of star formation rate as a function of stellar mass.
Galaxies and Other Gaseous Structures Through Quasar Absorption Lines Jane Charlton Penn State Collaborators: Chris Churchill (NMSU), Jie Ding (NYU),
Study Mg II quasar absorption line systems in order to understand the kinematics of halos probing distances out to 70 kpcs from the galaxies. Therefore.
Counterrotating core in the LMC: Accretion and/or Merger ? Annapurni Subramaniam Indian Institute of Astrophysics, Bangalore, INDIA (Evidence of a counterrotating.
In this toy scenario, metal enriched clouds entrained in galactic winds gives rise to absorption lines in quasar spectra, as illustrated in the above panels.
Theoretical Predictions about the Cold- Warm Gas Size around Cluster Galaxies using MgII systems Iván Lacerna VII Reunión Anual, SOCHIAS 2009 January 14.
Spectropolarimetry of the starburst galaxy M82: Kinematics of dust outflow Michitoshi YOSHIDA 1),2), Koji S. KAWABATA 1), and Yoichi OHYAMA 3) 1) Hiroshima.
9 ½ empirical Lyα relationships Jeff Cooke. 1. UV continuum reddening, β parameter 2. ISM absorption line width/strength 3. Outflows and HI column density/covering.
MOSFIRE and LDSS3 Spectroscopy for an [OII] Blob at z=1.18: Gas Outflow and Energy Source Yuichi Harikane (The University of Tokyo) Masami Ouchi, Suraphong.
UNM 29-Oct04 Galaxy-Halo Gas Kinematic Connection at 0.3 < z < 1 Collaborators: Chris Churchill (NMSU) Chuck Steidel (Caltech) Alice Shapley (Princeton)
Mike Crenshaw (Georgia State University) Steve Kraemer (Catholic University of America) Mass Outflows from AGN in Emission and Absorption NGC 4151.
Weipeng Lin (The Partner Group of MPA, SHAO) Collaborators Gerhard Börner (MPA) Houjun Mo (UMASS & MPA) Quasar Absorption line systems: Inside and around.
Marta Gavilán Bouzas Mercedes Mollá Lorente Estallidos IV, Granada
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice Shapley, Crystal Martin, Alison Coil ETH Zurich February.
1 X-ray Diagnostics of Physical Conditions in Warm Absorbers Y. Krongold (UNAM) N. Brickhouse (CfA) M. Elvis (CfA) F. Nicastro (CfA) S. Mathur (Ohio State.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Cool Halo Gas in a Cosmological Context Kyle Stewart “Team Irvine” UC Santa Cruz Galaxy Formation Workshop Kyle Stewart “Team Irvine” UC Santa.
Expansion and Collapse in the Cosmic Web Rauch (OCIW), Becker (CIT), Viel (IoA), Sargent (CIT), Smette (ESO),Simcoe (MIT), Barlow (CIT) (based on QSO absorption.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
 SPIRE/PACS guaranteed time programme.  Parallel Mode Observations at 100, 160, 250, 350 and 500µm simultaneously.  Each.
Star Formation and H2 in Damped Lya Clouds
Probing quasar outflows with intrinsic narrow absorption lines 1/15 The Central Engine of AGN in Xi’an (Oct. 17, 2006) T. Misawa, M. Eracleous, J. C. Charlton.
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
Outline Quasar Outflows Doron Chelouche (IAS and TAU) Introduction Model NGC 3783 Conclusions Quasar Outflows: The X-ray perspective Doron Chelouche Institute.
Sébastien Muller (ASIAA, Taiwan) M. Guélin (IRAM) M. Dumke (ESO) R. Lucas (IRAM) Probing isotopic ratios at z=0.89 Molecular line absorptions in front.
The University of Sheffield Joanna Holt 20 th October 2006 Emission line outflows: the evidence for AGN-induced feedback Clive Tadhunter.
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
[OII] Lisa Kewley Australian National University.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
The Formation of the HE System 胡剑 清华天体物理中心 Apr. 22, 2005.
The Baryon Cycle on FIRE Tracing Cosmic Inflows, Galactic Outflows, and Gas Recycling in Realistic Environments Daniel Anglés-Alcázar CIERA Postdoctoral.
Biases in Virial Black Hole Masses: an SDSS Perspective
Churchill (NMSU) – Santa Cruz 2013
Kinemetry of High-Redshift Galaxies
High Resolution Spectroscopy of the IGM: How High
Author: Ting-Wen Lan and Houjun Mo.(2018)
Presentation transcript:

A New Perspective on Galaxy Outflows Glenn Kacprzak Kutching - Sept. 19 th 2014 N. Bouché (IRAP) C. Churchill (NMSU) J. Cooke (Swinburne) S. Ho (UCSB) E. Klimek (NMSU) A. LeReun (IRAP) C. Martin (UCSB) N. Nielsen (NMSU) I. Schroetter (IRAP)

How We Observe Outflows Transverse Absorption MgII

Kacprzak et al Transverse Absorption

Kacprzak et al 2012 Also see: Bordoloi et al. 2011, Bouche et al. 2012, Lan et al Kacprzak et al. 2013

Transverse Absorption Lehner et al. 2013Kacprzak et al 2012 Also see: Bordoloi et al. 2011, Bouche et al. 2012, Lan et al

Two-Point Correlation Function The TPCF is obtained by taking the velocity differences between all pixel pairs in each system and binning them in velocity.

How We Observe Outflows Down-the-Barrel Absorption MgII

Weiner et al Also see: Martin & Bouche 2009, Rubin et al. 2010, Steidel et al. 2010, Martin et al. 2012, Rubin et al. 2012, Bordoloi et al Down-the-Barrel Absorption Bordoloi et al 2013

How We Observe Outflows Wouldn’t it be great to do both at the same time? No examples of this yet until now Kacprzak et al 2014, ApJL, 792, 12

Keck/LRIS slit placed on the quasar and galaxy APO/DIS slit placed along the major-axis of the galaxy D=58 kpc i = 52 ± 5 degrees Quasar 3 degrees from minor axis Probing Transverse + Down-the-Barrel Absorption Kacprzak et al 2014

Blueshifted “Down-the-Barrel” and “Transverse” MgII wrt Ha [O/H] = -0.21±0.08 SFR = Msun/yr Kacprzak et al 2014 Probing Transverse + Down-the-Barrel Absorption

Martin et al model Single v=-45 ± 15 km/s Modeling Down-the-Barrel Absorption Fixed ISM - width=200 km/s Double v=-132 ± 25 km/s Correct for inclination -v dtb = km/s Kacprzak et al 2014

Bouché et al outflow model - constant winds - populated with 10 5 clouds - half opening angle = degrees - perpendicular to the disk Modeling Transverse Absorption Kacprzak et al 2014

Best fit models yield v out =40-80 km/s This overlaps with v dtb = km/s Bouché et al outflow model - constant winds - populated with 10 5 clouds - half opening angle = degrees - perpendicular to the disk Kacprzak et al 2014 Modeling Transverse Absorption

Absorption Metallicity Kacprzak et al 2014

Absorption Metallicity log N(HI) = ± 0.15 Transverse: < X/H < -1.1 Kacprzak et al 2014 Galaxy : [O/H] = -0.21±0.08 If it is outflow, then we derive an gas outflow rate Msun/yr And for galaxy SFR= Msun/yr -> Mass loading factor =

Summary First detection of blueshifted down-the-barrel and transverse absorption. Both down-the-barrel and transverse models reproduce the absorption velocities indicating a kinematic connection. The combined geometry, kinematics and metallicity are suggestive that it is an outflow. The metallicity gradient from the galaxy (-0.21) to 58 kpc (-1.1) is suggestive that the gas is diluted or mixed during its journey.