Viruses and bacteria are the simplest biological systems - microbial models where scientists find life’s fundamental molecular mechanisms in their most.

Slides:



Advertisements
Similar presentations
Viruses: A Borrowed Life
Advertisements

Section 2: Viruses Preview Bellringer Key Ideas Is a Virus Alive?
Ch. 19 Viruses Objective: EK 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 19 Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses Page 328.
Viruses: a kind of “borrowed life” HIV infected T-cell.
Chapter 19 Viruses.
Chapter 19: viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Microbial Models Chapter 18. The Genetics of Viruses Bacteria and viruses often used - reproduce quickly, have unique features. Bacteria - prokaryotic.
If it is not alive, We can’t kill it -- We can only wish to contain it!
Bacteria are prokaryotic organisms. Their cells are much smaller and more simply organized that those of eukaryotes, such as plants and animals. Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 19~Viruses.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses called bacteriophages.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings.
April 29, 2013 Positive Attitude
Chapter 19 Viruses. Microbial Model Systems Are viruses living organisms? –Maybe The origins of molecular biology lie in early studies of viruses that.
Viruses Gene Regulation results in differential Gene Expression, leading to cell Specialization.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Unit 4 Proteins Transcription (DNA to mRNA) Translation (mRNA to tRNA.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
 Chapter 18~ Microbial Models: The Genetics of Viruses and Bacteria.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings I. Discovery Tobacco mosaic disease - stunts growth.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses lead “a kind of borrowed life” between.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viruses of Bacteria Bio 261 Microbiology Medgar Evers College Prof. Santos.
Genetics of Viruses.
Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig µm Chapter 19. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter.
Virus es Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Chapter What is a virus? A virus is nucleic acid wrapped in a protein coat Can be DNA or RNA Viruses are considering nonliving because they can’t.
Genetics of Viruses. Viral Structure n Virus: – “poison” (Latin) – infectious particles consisting of a nucleic acid in a protein coat n Capsid= viral.
Fig µm Chapter 19 - Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses.
Chapter 18.1 & 18.4 The Genetics of Viruses and Bacteria.
Viruses A “borrowed life”. Characteristics of Life All living things exhibit the following four characteristics: 1.Carry out metabolic activities to meet.
Viral Replication EK 3C3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts.
1 Zoology 145 course General Animal Biology For Premedical Student H Zoology Department Lecture 3 : Viruses.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
 Virus: A biological particle composed of nucleic acid and protein  Intracellular Parasites: organism that must “live” inside a host.
 Viruses and bacteria are the simplest biological systems - microbial models where scientists find life’s fundamental molecular mechanisms in their most.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
1. 2 Viruses Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings.
© 2014 Pearson Education, Inc. A Borrowed Life  A virus is an infectious particle consisting of genes packaged in a protein coat  Viruses are much simpler.
The Genetics of Viruses and Bacteria Microbial Models.
Viruses Lecture 16 Fall Viruses What is a virus? Are viruses alive? Read Discovery of Viruses pgs and Fig
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Chapter 19 Viruses. Overview Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
The Genetics of Viruses & Bacteria Chapter 18. Overview Viruses and bacteria –are the simplest biological systems –provided evidence that genes are made.
Chapter 19~Viruses.
Chapter 19: Viruses.
Viruses Page 328.
Viruses.
Chapter 19 Viruses.
Chapter 19~Viruses.
Chapter 19 Viruses.
Viruses Page 328.
Chapter 19 Viruses.
Chapter 19. Viruses.
General Animal Biology
Viral Genetics 12/7/2018.
Chapter 19 Viruses VIRUS Entry and uncoating DNA Capsid Transcription
Overview: A Borrowed Life
Virus Structure and Method of Invasion
Fig Chapter 19: VIRUS Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Viruses
Viruses Page 328.
Viruses Page 328.
Presentation transcript:

Viruses and bacteria are the simplest biological systems - microbial models where scientists find life’s fundamental molecular mechanisms in their most basic, accessible forms. Microbiologists provided most of the evidence that genes are made of DNA, and they worked out most of the major steps in DNA replication, transcription, and translation. Viruses and bacteria also have interesting, unique genetic features with implications for understanding diseases that they cause. Introduction

Bacteria are prokaryotic organisms. Their cells are much smaller and more simply organized that those of eukaryotes, such as plants and animals. Viruses are smaller and simpler still, lacking the structure and most meta- bolic machinery in cells. Most viruses are little more than aggregates of nucleic acids and protein - genes in a protein coat. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 18.1

The genome of viruses includes other options than the double-stranded DNA that we have studied. Viral genomes may consist of double-stranded DNA, single-stranded DNA, double-stranded RNA, or single- stranded RNA, depending on the specific type of virus. The viral genome is usually organized as a single linear or circular molecule of nucleic acid. The smallest viruses have only four genes, while the largest have several hundred. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

The capsid is a protein shell enclosing the viral genome. Capsids are build of a large number of protein subunits called capsomeres, but with limited diversity. The capsid of the tobacco mosaic virus has over 1,000 copies of the same protein. Adenoviruses have 252 identical proteins arranged into a polyhedral capsid - as an icosahedron. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 18.2a & b

The most complex capsids are found in viruses that infect bacteria, called bacteriophages or phages. The T-even phages that infect Escherichia coli have a 20-sided capsid head that encloses their DNA and protein tail piece that attaches the phage to the host and injects the phage DNA inside. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 18.2d

Viruses are obligate intracellular parasites. They can reproduce only within a host cell. An isolated virus is unable to reproduce - or do anything else, except infect an appropriate host. Viruses lack the enzymes for metabolism or ribosomes for protein synthesis. An isolated virus is merely a packaged set of genes in transit from one host cell to another. 3. Viruses can reproduce only within a host cell: an overview Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

A viral infection begins when the genome of the virus enters the host cell. Once inside, the viral genome commandeers its host, reprogramming the cell to copy viral nucleic acid and manufacture proteins from the viral genome. The nucleic acid molecules and capsomeres then self-assemble into viral particles and exit the cell. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 18.3

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 18.4

Retroviruses (class VI) have the most complicated life cycles. These carry an enzyme, reverse transcriptase, which transcribes DNA from an RNA template. The newly made DNA is inserted as a provirus into a chromosome in the animal cell. The host’s RNA polymerase transcribes the viral DNA into more RNA molecules. These can function both as mRNA for the synthesis of viral proteins and as genomes for new virus particles released from the cell. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Prions are infectious proteins that spread a disease. They appear to cause several degenerative brain diseases including scrapie in sheep, “mad cow disease”, and Creutzfeldt-Jacob disease in humans. According to the leading hypothesis, a prion is a misfolded form of a normal brain protein. It can then convert a normal protein into the prion version, creating a chain reaction that increases their numbers. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig