IOP algorithm OOXX Jeremy Werdell & Bryan Franz NASA Ocean Biology Processing Group 25 Sep 2010, Anchorage, AK

Slides:



Advertisements
Similar presentations
Comparisons of ocean colour merged data sets Stéphane Maritorena ICESS University of California, Santa Barbara Special thanks to Odile, Antoine and the.
Advertisements

Ocean Optics XXI, Glasgow, Scotland, October 8-12, 2012 David Antoine; André Morel Laboratoire d’Océanographie de Villefranche (LOV), CNRS and Université.
From UV to fluorescence, a semi-analytical ocean color model for MODIS and beyond Stéphane Maritorena & Dave Siegel Earth Research Institute University.
Welcome to the Ocean Color Bio-optical Algorithm Mini Workshop Goals, Motivation, and Guidance Janet W. Campbell University of New Hampshire Durham, New.
Beyond Chlorophyll: Ocean color ESDRs and new products S. Maritorena, D. A. Siegel and T. Kostadinov Institute for Computational Earth System Science University.
Tim Smyth and Jamie Shutler Assessment of analysis and forecast skill Assessment using satellite data.
1 A Temporally Consistent NO 2 data record for Ocean Color Work Wayne Robinson, Ziauddin Ahmad, Charles McClain, Ocean Biology Processing Group (OBPG)
Achieving Global Ocean Color Climate Data Records ASLO Aquatic Sciences Meeting 17 February 2011 – San Juan, Puerto Rico Bryan A. Franz and the NASA Ocean.
Characterization of radiance uncertainties for SeaWiFS and Modis-Aqua Introduction The spectral remote sensing reflectance is arguably the most important.
GlobColour CDR Meeting ESRIN July 2006 Merging Algorithm Sensitivity Analysis ACRI-ST/UoP.
PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Comparison of ocean color atmospheric correction approaches for operational remote sensing of turbid, coastal.
IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX.
The GSM merging model. Previous achievements and application to GlobCOLOUR Globcolour / Medspiration user consultation, Dec 4-6, 2006, Villefranche/mer.
Uncertainty estimates in input (Rrs) and output ocean color data: a brief review Stéphane Maritorena – ERI/UCSB.
Error bar estimates Estimates of the uncertainties on input LwN Estimates of the error model Estimates of the uncertainties on outputs Chla, bbp,cdm (Co-variance.
Characterizing and comparison of uncertainty in the AVHRR Pathfinder SST field, Versions 5 & 6 Robert Evans Guilllermo Podesta’ RSMAS Nov 8, 2010 with.
1 Calibration Adjustments for the MODIS Aqua 2015 Ocean Color Reprocessing Gerhard Meister, NASA Code 616 OBPG (Ocean Biology Processing Group) 5/18/2015.
Satellite Retrieval of Phytoplankton Community Size Structure in the Global Ocean Colleen Mouw University of Wisconsin-Madison In collaboration with Jim.
SNPP VIIRS On-Orbit Calibration for Ocean Color Applications MODIS / VIIRS Science Team Meeting May 2015 Gene Eplee, Kevin Turpie, Gerhard Meister, and.
Rrs Modeling and BRDF Correction ZhongPing Lee 1, Bertrand Lubac 1, Deric Gray 2, Alan Weidemann 2, Ken Voss 3, Malik Chami 4 1 Northern Gulf Institute,
In situ science in support of satellite ocean color objectives Jeremy Werdell NASA Goddard Space Flight Center Science Systems & Applications, Inc. 6 Jun.
MODIS & VIIRS Ocean Science Team Break-out Report MODIS Science Team Meeting May 2015, Silver Spring, MD.
Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Jeremy Werdell NASA.
1 Evaluating & generalizing ocean color inversion models that retrieve marine IOPs Ocean Optics Summer Course University of Maine July 2011.
IOP algorithm OOXX, Anchorage, September 25, 2010 Some (basic) considerations on our capability to derive b bp from AOPs (R and K d ), in situ.
Retrieving Coastal Optical Properties from MERIS S. Ladner 1, P. Lyon 2, R. Arnone 2, R. Gould 2, T. Lawson 1, P. Martinolich 1 1) QinetiQ North America,
Recent advances for the inversion of the particulate backscattering coefficient at different wavelengths H. Loisel, C. Jamet, and D. Dessailly.
High Resolution MODIS Ocean Color Fred Patt 1, Bryan Franz 1, Gerhard Meister 2, P. Jeremy Werdell 3 NASA Ocean Biology Processing Group 1 Science Applications.
The Ocean Color MEASURES Project S. Maritorena 1, J. Frew 2, N.B. Nelson 1, D.A. Siegel 1,3, M. Behrenfeld 4 1. Institute for Computational Earth System.
Satellite Ocean Color Products: What should be produced? ZhongPing Lee, Bryan Franz, Norman Kuring, Sean Baily raise questions, rather to provide definite.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
Lachlan McKinna & Jeremy Werdell Ocean Ecology Laboratory NASA Goddard Space Flight Center MODIS Science Team Meeting Silver Spring, Maryland 21 May 2015.
Validation of turbidity products EuroGOOS Conference, May 20-22, 2008, Exeter Session Observations – OBS17 May 22, 2008 Validation of turbidity products.
ASSESSMENT OF OPTICAL CLOSURE USING THE PLUMES AND BLOOMS IN-SITU OPTICAL DATASET, SANTA BARBARA CHANNEL, CALIFORNIA Tihomir S. Kostadinov, David A. Siegel,
MODIS/Aqua Ocean Reprocessing Bryan Franz Ocean Biology Processing Group MODIS Science Team Meeting March 2005.
MODIS OCEAN QA Browse Imagery (MQABI Browse Tool) NASA Goddard Space Flight Center Sept 4, 2003
VIPER Quality Assessment Overview Presenter: Sathyadev Ramachandran, SPS Inc.
Goddard Space Flight Center Ocean Color Reprocessing Bryan Franz Ocean Biology Processing Group NASA Goddard Space Flight Center.
Definition and assessment of a regional Mediterranean Sea ocean colour algorithm for surface chlorophyll Gianluca Volpe National Oceanography Centre, Southampton.
NASA Ocean Color Research Team Meeting, Silver Spring, Maryland 5-7 May 2014 II. Objectives Establish a high-quality long-term observational time series.
Ocean Break-out Summary MODIS Science Team Meeting 9 May 2012 Bryan Franz and the MODIS Ocean Science Team.
Sensing primary production from ocean color: Puzzle pieces and their status ZhongPing Lee University of Massachusetts Boston.
Chapter 3 Response Charts.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
VIIRS Product Evaluation at the Ocean PEATE Frederick S. Patt Gene C. Feldman IGARSS 2010 July 27, 2010.
GlobColour / Medspiration user consultations, Nov 20-22, 2007, Oslo Validation of the GlobColour Full product set ( FPS ) over open ocean Case 1 waters.
SNPP Ocean SIPS status SNPP Applications Workshop 18 November 2014 Bryan Franz and the Ocean Biology Processing Group.
Validation of Coastwatch Ocean Color products S. Ramachandran, R. Sinha ( SP Systems NOAA/NESDIS) Kent Hughes and C. W. Brown ( NOAA/NESDIS/ORA,
IOP Algorithm Ocean Optics XIX, 7 Oct 2008, PJW NASA/SSAI IOP Algorithm OOXIX Jeremy Werdell NASA Ocean Biology Processing Group.
The role of Optical Water Type classification in the context of GIOP Timothy S. Moore University of New Hampshire, Durham NH Mark D. Dowell Joint Research.
In situ data in support of (atmospheric) ocean color satellite calibration & validation activities How are my data used? Part 2 Ocean Optics Class University.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
A Temporal Filtering Algorithm to Reconstruct Daily Albedo Series Based on GLASS Albedo product Nanfeng Liu 1,2, Qiang Liu 1,2, Lizhao Wang 2, Jianguang.
SeaWiFS Calibration & Validation Strategy & Results Charles R. McClain SeaWiFS Project Scientist NASA/Goddard Space Flight Center February 11, 2004.
A semi-analytical ocean color inherent optical property model: approach and application. Tim Smyth, Gerald Moore, Takafumi Hirata and Jim Aiken Plymouth.
Polarization analysis in MODIS Gerhard Meister, Ewa Kwiatkowska, Bryan Franz, Chuck McClain Ocean Biology Processing Group 18 June 2008 Polarization Technology.
MODIS-Terra cross-calibration for ocean color bands Ewa Kwiatkowska Bryan Franz, Gerhard Meister, Gene Eplee OBPG 30 January 2008.
CIOSS Ocean Optics Aug 2005 Ocean Optics, Cal/Val Plans, CDR Records for Ocean Color Ricardo M Letelier Oregon State University Outline - Defining Ocean.
Some refinements for global IOPs products ZhongPing Lee IOPs Workshop, Anchorage, AK, Oct 25, 2010.
NASA OBPG Update OCRT Meeting 23 April 2012 Bryan Franz and the NASA Ocean Biology Processing Group.
New Aerosol Models for Ocean Color Retrievals Zia Ahmad NASA-Ocean Biology Processing Group (OBPG) MODIS Meeting May 18-20, 2011.
MODIS Atmosphere Products: The Importance of Record Quality and Length in Quantifying Trends and Correlations S. Platnick 1, N. Amarasinghe 1,2, P. Hubanks.
“Regional” adjustments of SAA parameterization Mark Dowell & Timothy Moore EC-JRCNURC & UNH.
1 IOP Algorithm Workshop, Ocean Optics XIX, 3-4 Oct 2008, B. Franz, NASA/OBPG Operational Implementation Strategies Moderator: Bryan Franz Topic 3.
International Ocean Color Science Meeting, Darmstadt, Germany, May 6-8, 2013 III. MODIS-Aqua normalized water leaving radiance nLw III.1. R2010 vs. R2012.
L wN ( ) Uncertainty Estimation Using Hyperspectral GSM Assume a GSM trio (Chl, CDM & BBP) and associate uncertainty level Drive hyperspectral GSM forward.
High Resolution MODIS Ocean Color Bryan Franz NASA Ocean Biology Processing Group MODIS Science Team Meeting, 4-6 January 2006, Baltimore, MD.
Incorporating Satellite Time-Series data into Modeling Watson Gregg NASA/GSFC/Global Modeling and Assimilation Office Topics: Models, Satellite, and In.
AC-9/AC-S data analysis from CDOM Lab
Assessment of Satellite Ocean Color Products of the Coast of Martha’s Vineyard using AERONET-Ocean Color Measurements Hui Feng1, Heidi Sosik2 , and Tim.
Presentation transcript:

IOP algorithm OOXX Jeremy Werdell & Bryan Franz NASA Ocean Biology Processing Group 25 Sep 2010, Anchorage, AK Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

3 goals for this workshop: (1) receive feedback on the implementation of GIOP within l2gen and the analysis tools developed for algorithm evaluation (2) identify metrics for evaluating algorithm performance (3) outline a strategy to support in/output of uncertainties Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

goal (1): receive feedback on the implementation of GIOP within l2gen and the analysis tools developed for algorithm evaluation we will review the: status of GIOP implementation within l2gen preliminary configuration of GIOP analysis tools available for algorithm evaluation questions for the working group: what additional enhancements should be made to GIOP? what weaknesses exist in the current implementation? what additional analysis tools should be developed? Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

goal (2): identify metrics for evaluating algorithm performance the working group will: define a series of metrics for algorithm skill assessment questions for the working group: if we reconfigure GIOP, how do we know if this configuration is better or worse than an alternative configuration? what combination of data products and spectral ranges should be considered in this evaluation process? Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

goal (3): outline a strategy to support in/output of uncertainties the working group will: identify and discuss methods for including uncertainties within an algorithm (input R rs uncertainties, output IOP uncertainties) questions for the working group: what statistics/metrics are reported by existing methods and what are their meanings (what do they tell us)? what methods can be implemented in the short term? what methods require additional investigation or information? Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

Morel f/Q - or - Gordon quadratic Levenberg-Marquardt Amoeba (downhill simplex) SVD matrix inversion LUD matrix inversion GIOP framework Lee et al Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

tabulated b bp * power-law with: fixed exponent Lee (QAA) Ciotti Morel Hoge & Lyon Loisel & Stramski tabulated a dg * exponential with: fixed exponent Lee (QAA) OBPG tabulated a  * ( ) Ciotti a  * ( ) Bricaud a  * ( ) GIOP framework fixed M bp b bp * from: QAA Loisel & Stramski Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

GIOP in SeaDAS Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

GIOP Baseline Configuration (PQN) 1.R rs [0+] to r rs [0-] via Lee et al AOP to IOP via Morel f/Q, input Chl from empirical OCx 3.a ph * via Bricaud et al. 1995, input Chl from empirical OCx 4.a dg * via exponential with fixed exponent S dg = b bp * via power-law with exponent derived via Lee et al Levenberg-Marquardt optimization 7.All wavelengths 400 – 700 nm included in optimization Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

GIOP(PQN) test products available for SeaWIFS and MODIS Aqua, from standard Level-3 dailies composited to 8-day, monthly, seasonal binned products and SMI maps at 9 and 4km Chl a(443) a(555) b b (443) b b (555) a ph (443) a ph (555) a dg (443) S dg b bp (443) S bp  r rs Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

features in the queue to be added to GIOP: a w and b bw dependence on T and S Lee et al. (1998) tunable a ph IOP-based AOP to IOP method(s) updated Loisel and Stramski (?) uncertainties Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

analyses and tools for evaluating algorithm performance: match-ups: NOMAD, IOCCG synthetic data set, SeaWiFS/Aqua match-ups scatter plots, frequency distributions, regression statistics modeled vs. measured goodness of fit satellite Level-2 and -3 time-series and frequency distributions: satellite-to-in situ, satellite-to-satellite Level-2 regional series (9 regions) Level-3 global and trophic-level series (oligo, meso, eutrophic)

NOMAD IOCCG Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 match-ups: scatter plots, modeled vs. measured

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 match-ups: NOMAD IOCCG frequency distributions, modeled vs. measured

mean relative difference ( Δ ) as a measure of goodness of fit: for R rs : for IOPs (derived products): calculated over 400 ≤ ≤ 600 nm Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

match-ups: NOMAD IOCCG average spectral differences, modeled vs. measured 

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 L2 time-series:

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 a ph (443), a ph (555) b b (443) b b (443) a ph (443) L3 time-series:

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 other tools not shown: Level-3 temporal anomalies zonal Level-3 time-series (10° boxes from 60°N to 60°S) possible additional validation results: stratification of match-ups by solar and satellite geometries attention to Level-2 and -3 coverages (sample sizes)

open discussion: comments on the implementation of GIOP? any features to be added to GIOP? comments on the validation tools? Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

summary of comparisons to in situ/synthetic data: dynamic range of all well represented, except at highest end spectral biases in a dg and a ph (S dg =0.018 too high?) a dg low, a ph high in m -1 range b bp compares well

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 sensitivity analyses: tools: NOMAD, IOCCG synthetic data set scatter plots, frequency distributions, regression statistics modeled vs. measured goodness of fit tests (run relative to baseline preliminary configuration): R rs transmission (spectrally flat vs. spectral Lee function) Morel f/Q vs. Gordon quadratic Levenberg-Marquardt vs. matrix inversion 6 vs. 5 (no 670 nm) vary a ph : baseline (Bricaud) chl ±10%, ±33%; Ciotti (S f =0.5); GSM vary S dg : baseline (0.018) ±10%, ±33%; QAA, OBPG vary  : baseline (QAA) ±10%, ±33%

NOMAD IOCCG Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 sensitivities: scatter plots, baseline (Morel f/Q) vs. Gordon quadratic

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 sensitivities: NOMAD IOCCG average spectral differences, baseline (Morel f/Q) vs. Gordon quadratic 

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 sensitivities: NOMAD IOCCG absolute % differences, baseline (Morel f/Q) vs. Gordon quadratic

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 L3 time-series: a ph (443), a ph (555) deep water oligotrophiceutrophic mesotrophic Morel f/Q solid Gordon quadratic dashed

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 b b (443) L3 time-series: deep water oligotrophiceutrophic mesotrophic Morel f/Q black Gordon quadratic red

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 hierarchical summary of sensitivity analyses: tier 1 (very sensitive): Levenberg-Marquardt vs. linear matrix inversion a ph from Ciotti (S f =0.5) or GSM S dg ±33% or from OBPG algorithm Morel f/Q vs. Gordon quadratic tier 2 (sensitive, typically in particular parts of dynamic range): 6 vs. 5 S dg ±10% or from QAA tier 3 (not sensitive): transmission Bricaud chl ±10% and ±33%;  ±10% and ±33% priority does not indicate better/worse performance, only that the baseline configuration is sensitive to the particular change

open discussion: comments on the sensitivity analyses? any analyses to be added? Bryan and Jeremy are in the process of documenting these tests Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

interpreting the sensitivity analyses: performance metrics: defining a series of metrics for skill assessment (no one leaves until we do this) specific sensitivity analyses: Morel f/Q vs. Gordon quadratic Levenberg-Marquardt vs. linear matrix inversion defining S dg (static or dynamic?)

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 performance metrics: data products, spectral ranges, metrics: consider a dg, a ph, b bp from 400 ≤ ≤ 700 nm (600 nm?) minimize  R rs compare with ground truth (regression statistics,  IOP) maintain sample sizes trade-offs and issues: excellence at 1 vs. lesser, but acceptable performance at all performance over dynamic range of retrievals (global vs. coastal) Improved performance vs. loss of sample sizes

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 sensitivities: baseline (Morel f/Q) vs. Gordon quadratic

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010 match-ups: baseline (Morel f/Q) vs. Gordon quadratic baseline (Morel f/Q) Gordon quadratic

INSERT: iop02/giop_g88_morel_zonal.html Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

match-ups: baseline (Morel f/Q) vs. Gordon quadratic baseline (Morel f/Q) Gordon quadratic insert regression statistics and  s insert comments

Back-up Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

Sensor Calibration & IOP Trends Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

Maritotrena et al GIOP Baseline – SeaWIFS & MODIS R2009.1

Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010

SeaWiFS Calibration Change – Impact to a dg GIOP (PQN) Model Werdell & Franz, NASA OBPG, IOP Algorithm OOXX, 25 Sep 2010