Analysis of Algorithms CS 477/677 Red-Black Trees Instructor: George Bebis (Chapter 14)

Slides:



Advertisements
Similar presentations
Chapter 13. Red-Black Trees
Advertisements

Jan Binary Search Trees What is a search binary tree? Inorder search of a binary search tree Find Min & Max Predecessor and successor BST insertion.
Analysis of Algorithms CS 477/677 Binary Search Trees Instructor: George Bebis (Appendix B5.2, Chapter 12)
Binary Search Trees Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
Red-Black tree Recall binary search tree –Key values in the left subtree = the node value Operations:
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture six Dr. Hamdy M. Mousa.
Binary Search Trees Comp 550.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 10.
2IL50 Data Structures Spring 2015 Lecture 8: Augmenting Data Structures.
1 Brief review of the material so far Recursive procedures, recursive data structures –Pseudocode for algorithms Example: algorithm(s) to compute a n Example:
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 12.
Red-Black Trees CIS 606 Spring Red-black trees A variation of binary search trees. Balanced: height is O(lg n), where n is the number of nodes.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 11.
CS Section 600 CS Section 002 Dr. Angela Guercio Spring 2010.
Balanced Search Trees CS Data Structures Mehmet H Gunes Modified from authors’ slides.
Lecture 12: Balanced Binary Search Trees Shang-Hua Teng.
Analysis of Algorithms CS 477/677 Red-Black Trees Instructor: George Bebis (Chapter 14)
Comp 122, Spring 2004 Red-Black Trees. redblack - 2 Comp 122, Spring 2004 Red-black trees: Overview  Red-black trees are a variation of binary search.
Data Structures, Spring 2004 © L. Joskowicz 1 Data Structures – LECTURE 9 Balanced trees Motivation Red-black trees –Definition, Height –Rotations, Insert,
13. Red-Black Tree Hsu, Lih-Hsing. Computer Theory Lab. Chapter 13P.2 One of many search-tree schemes that are “ balanced ” in order to guarantee that.
Design & Analysis of Algorithms Unit 2 ADVANCED DATA STRUCTURE.
Balanced Trees Balanced trees have height O(lg n).
Red-Black Trees Lecture 10 Nawazish Naveed. Red-Black Trees (Intro) BSTs perform dynamic set operations such as SEARCH, INSERT, DELETE etc in O(h) time.
CS 3343: Analysis of Algorithms Lecture 16: Binary search trees & red- black trees.
Red-Black tree Recall binary search tree –Key values in the left subtree = the node value Operations:
Red-Black Trees CS302 Data Structures Dr. George Bebis.
October 19, 2005Copyright © by Erik D. Demaine and Charles E. LeisersonL7.1 Introduction to Algorithms 6.046J/18.401J LECTURE 10 Balanced Search.
Introduction to Algorithms Jiafen Liu Sept
Red-Black Trees Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
Balancing Binary Search Trees. Balanced Binary Search Trees A BST is perfectly balanced if, for every node, the difference between the number of nodes.
Mudasser Naseer 1 10/20/2015 CSC 201: Design and Analysis of Algorithms Lecture # 11 Red-Black Trees.
Red-Black Trees Comp 550.
Chapter 13 Red-Black Trees Lee, Hsiu-Hui Ack: This presentation is based on the lecture slides from Hsu, Lih-Hsing, as well as various materials from the.
1 Red-Black Trees By Mary Hudachek-Buswell Red Black Tree Properties Rotate Red Black Trees Insertion Red Black Trees.
Lecture 10 Algorithm Analysis Arne Kutzner Hanyang University / Seoul Korea.
Lecture 2 Red-Black Trees. 8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 2 Red-Black Trees Definition: A red-black tree is a binary search tree in which: 
2IL50 Data Structures Fall 2015 Lecture 7: Binary Search Trees.
CS 473Lecture X1 CS473-Algorithms Lecture RED-BLACK TREES (RBT)
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 9.
Red Black Tree Essentials Notes from “Introduction to Algorithms”, Cormen et al.
October 19, 2005Copyright © by Erik D. Demaine and Charles E. LeisersonL7.1 Introduction to Algorithms LECTURE 8 Balanced Search Trees ‧ Binary.
Red Black Trees. History The concept of a balancing tree was first invented by Adel’son-Vel’skii and Landis in They came up with the AVL tree. In.
Fundamentals of Algorithms MCS - 2 Lecture # 17. Binary Search Trees.
Data StructuresData Structures Red Black Trees. Red-black trees: Overview Red-black trees are a variation of binary search trees to ensure that the tree.
Red-Black Tree Insertion Start with binary search insertion, coloring the new node red NIL l Insert 18 NIL l NIL l 1315 NIL l
1 Algorithms CSCI 235, Fall 2015 Lecture 24 Red Black Trees.
Sept Red-Black Trees What is a red-black tree? -node color: red or black - nil[T] and black height Subtree rotation Node insertion Node deletion.
Data Structures and Algorithms (AT70.02) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology Instructor: Prof. Sumanta Guha Slide Sources: CLRS “Intro.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 10.
Binary Search Trees What is a binary search tree?
Balanced Search Trees Modified from authors’ slides.
CS 332: Algorithms Red-Black Trees David Luebke /20/2018.
Red Black Trees
Red-Black Trees.
Red-Black Trees.
Red-Black Trees.
CMSC 341 (Data Structures)
Red Black Trees.
Lecture 9 Algorithm Analysis
Red Black Tree Essentials
Lecture 9 Algorithm Analysis
Lecture 9 Algorithm Analysis
CS 583 Analysis of Algorithms
Red Black Tree Essentials
Red-Black Trees.
Design and Analysis of Algorithms
Analysis of Algorithms CS 477/677
Binary Search Trees Comp 122, Spring 2004.
Chapter 12&13: Binary Search Trees (BSTs)
Red-Black Trees CS302 Data Structures
Presentation transcript:

Analysis of Algorithms CS 477/677 Red-Black Trees Instructor: George Bebis (Chapter 14)

2 Red-Black Trees “Balanced” binary search trees guarantee an O(lgn) running time Red-black-tree –Binary search tree with an additional attribute for its nodes: color which can be red or black –Constrains the way nodes can be colored on any path from the root to a leaf: Ensures that no path is more than twice as long as any other path  the tree is balanced

3 Example: RED-BLACK-TREE For convenience we use a sentinel NIL[T] to represent all the NIL nodes at the leafs –NIL[T] has the same fields as an ordinary node –Color[NIL[T]] = BLACK –The other fields may be set to arbitrary values NIL

4 Red-Black-Trees Properties (**Satisfy the binary search tree property**) 1.Every node is either red or black 2.The root is black 3.Every leaf ( NIL ) is black 4.If a node is red, then both its children are black No two consecutive red nodes on a simple path from the root to a leaf 5.For each node, all paths from that node to descendant leaves contain the same number of black nodes

5 Black-Height of a Node Height of a node: the number of edges in the longest path to a leaf Black-height of a node x: bh(x) is the number of black nodes (including NIL) on the path from x to a leaf, not counting x NIL h = 4 bh = 2 h = 3 bh = 2 h = 2 bh = 1 h = 1 bh = 1 h = 1 bh = 1 h = 2 bh = 1 h = 1 bh = 1

6 Claim 1 Any node x with height h(x) has bh(x) ≥ h(x)/2 Proof –By property 4, at most h/2 red nodes on the path from the node to a leaf –Hence at least h/2 are black NIL h = 4 bh = 2 h = 3 bh = 2 h = 2 bh = 1 h = 1 bh = 1 h = 1 bh = 1 h = 2 bh = 1 h = 1 bh = 1

7 Claim 2 The subtree rooted at any node x contains at least 2 bh(x) - 1 internal nodes NIL h = 4 bh = 2 h = 3 bh = 2 h = 2 bh = 1 h = 1 bh = 1 h = 1 bh = 1 h = 2 bh = 1 h = 1 bh = 1

8 Operations on Red-Black-Trees The non-modifying binary-search-tree operations MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and SEARCH run in O(h) time –They take O(lgn) time on red-black trees What about TREE-INSERT and TREE-DELETE? –They will still run on O(lgn) –We have to guarantee that the modified tree will still be a red-black tree

9 INSERT INSERT: what color to make the new node? Red? Let’s insert 35! –Property 4 is violated: if a node is red, then both its children are black Black? Let’s insert 14! –Property 5 is violated: all paths from a node to its leaves contain the same number of black nodes

10 DELETE DELETE: what color was the node that was removed? Black? 1.Every node is either red or black 2.The root is black 3.Every leaf ( NIL ) is black 4.If a node is red, then both its children are black 5.For each node, all paths from the node to descendant leaves contain the same number of black nodes OK! Not OK! Could create two red nodes in a row Not OK! Could change the black heights of some nodes Not OK! If removing the root and the child that replaces it is red

11 Rotations Operations for re-structuring the tree after insert and delete operations on red-black trees Rotations take a red-black-tree and a node within the tree and: –Together with some node re-coloring they help restore the red-black-tree property –Change some of the pointer structure –Do not change the binary-search tree property Two types of rotations: –Left & right rotations

12 Left Rotations Assumptions for a left rotation on a node x : –The right child of x (y) is not NIL Idea: –Pivots around the link from x to y –Makes y the new root of the subtree –x becomes y ’s left child –y ’s left child becomes x ’s right child

13 Example: LEFT-ROTATE

14 LEFT-ROTATE(T, x) 1.y ← right[x] ►Set y 2.right[x] ← left[y] ► y’s left subtree becomes x’s right subtree 3.if left[y]  NIL 4. then p[left[y]] ← x ► Set the parent relation from left[y] to x 5.p[y] ← p[x] ► The parent of x becomes the parent of y 6.if p[x] = NIL 7. then root[T] ← y 8. else if x = left[p[x]] 9. then left[p[x]] ← y 10. else right[p[x]] ← y 11.left[y] ← x ► Put x on y’s left 12.p[x] ← y ► y becomes x’s parent

15 Right Rotations Assumptions for a right rotation on a node x : –The left child of y (x) is not NIL Idea: –Pivots around the link from y to x –Makes x the new root of the subtree –y becomes x ’s right child –x ’s right child becomes y ’s left child

16 Insertion Goal: –Insert a new node z into a red-black-tree Idea: –Insert node z into the tree as for an ordinary binary search tree –Color the node red –Restore the red-black-tree properties Use an auxiliary procedure RB-INSERT-FIXUP

17 RB Properties Affected by Insert 1.Every node is either red or black 2.The root is black 3.Every leaf ( NIL ) is black 4.If a node is red, then both its children are black 5.For each node, all paths from the node to descendant leaves contain the same number of black nodes OK! If z is the root  not OK OK! If p(z) is red  not OK z and p(z) are both red OK!

18 RB-INSERT-FIXUP – Case 1 z’s “uncle” (y) is red Idea: (z is a right child) p[p[z]] (z’s grandparent) must be black: z and p[z] are both red Color p[z] black Color y black Color p[p[z]] red z = p[p[z]] –Push the “red” violation up the tree

19 RB-INSERT-FIXUP – Case 1 z ’s “uncle” (y) is red Idea: ( z is a left child) p[p[z]] ( z ’s grandparent) must be black: z and p[z] are both red color p[z]  black color y  black color p[p[z]]  red z = p[p[z]] –Push the “red” violation up the tree

20 RB-INSERT-FIXUP – Case 3 Case 3: z ’s “uncle” (y) is black z is a left child Case 3 Idea: color p[z]  black color p[p[z]]  red RIGHT-ROTATE(T, p[p[z]]) No longer have 2 reds in a row p[z] is now black

21 RB-INSERT-FIXUP – Case 2 Case 2: z ’s “uncle” ( y ) is black z is a right child Idea: z  p[z] LEFT-ROTATE( T, z)  now z is a left child, and both z and p[z] are red  case 3 Case 2Case 3

22 RB-INSERT-FIXUP (T, z) 1.while color[p[z]] = RED 2. do if p[z] = left[p[p[z]]] 3. then y ← right[p[p[z]]] 4. if color[y] = RED 5. then Case1 6. else if z = right[p[z]] 7. then Case2 8. Case3 9. else (same as then clause with “right” and “left” exchanged) 10.color[root[T]] ← BLACK The while loop repeats only when case1 is executed: O(lgn) times Set the value of x’s “uncle” We just inserted the root, or The red violation reached the root

23 Example 11 Insert y z Case 1 y z and p[z] are both red z’s uncle y is red z z and p[z] are both red z’s uncle y is black z is a right child Case z y Case 3 z and p[z] are red z’s uncle y is black z is a left child z

24 RB-INSERT (T, z) 1. y ← NIL 2. x ← root[T] 3. while x  NIL 4. do y ← x 5. if key[z] < key[x] 6. then x ← left[x] 7. else x ← right[x] 8. p[z] ← y Initialize nodes x and y Throughout the algorithm y points to the parent of x Go down the tree until reaching a leaf At that point y is the parent of the node to be inserted Sets the parent of z to be y

25 RB-INSERT (T, z) 9. if y = NIL 10. then root[T] ← z 11. else if key[z] < key[y] 12. then left[y] ← z 13. else right[y] ← z 14. left[z] ← NIL 15. right[z] ← NIL 16. color[z] ← RED 17. RB-INSERT-FIXUP (T, z) The tree was empty: set the new node to be the root Otherwise, set z to be the left or right child of y, depending on whether the inserted node is smaller or larger than y’s key Set the fields of the newly added node Fix any inconsistencies that could have been introduced by adding this new red node

26 Analysis of RB-INSERT Inserting the new element into the tree O(lgn) RB-INSERT-FIXUP –The while loop repeats only if CASE 1 is executed –The number of times the while loop can be executed is O(lgn) Total running time of RB-INSERT: O(lgn)

27 Red-Black Trees - Summary Operations on red-black-trees: –SEARCH O(h) –PREDECESSOR O(h) –SUCCESOR O(h) –MINIMUM O(h) –MAXIMUM O(h) –INSERT O(h) –DELETE O(h) Red-black-trees guarantee that the height of the tree will be O(lgn)