Cellular Respiration Harvesting Chemical Energy Important parts.

Slides:



Advertisements
Similar presentations
Cellular Respiration Harvesting Chemical Energy
Advertisements

Cellular Respiration Harvesting Chemical Energy
Harvesting stored energy
AP Biology Cellular Respiration Harvesting Chemical Energy ATP.
Making energy! ATP The Point is to Make ATP!
AP Biology Daily Warm-up Friday, October 10 th Describe the Kreb’s Cycle and oxidative phosphorylation. How many ATP are produced in each? HW: -Read 7.5.
**Glucose made as a byproduct of photosynthetic reactions Harvesting stored energy…  Energy stored in organic molecules  carbohydrates, fats, proteins.
Making energy! ATP The point is to make ATP!.
The Start of Cell Respiration Electronegativity The Sharing Game – Some are better at sharing and others are not – Elements are the same way – Atoms.
How Cells Harvest Chemical Energy
AP Biology Cellular Respiration- Breaking the bonds of sugar to produce ATP ATP.
AP Biology Chapter 9. Cellular Respiration STAGE 1: Glycolysis.
Cellular Respiration Harvesting Chemical Energy Glycolysis I
Today: Kreb’s Cycle Today: Kreb’s Cycle –Cell Respiration Homework Due Monday: Electron Transport Chain, Monday: Electron Transport Chain, Pre-lab assignment.
AP Biology Cellular Respiration Harvesting Chemical Energy ATP.
Cellular Respiration How do we harvest energy from fuels? Digest large molecules into smaller ones – break bonds & move electrons from one.
AP Biology Cellular Respiration Harvesting Chemical Energy.
Cellular Respiration.
Cellular Respiration Harvesting Chemical Energy ATP.
AP Biology Cellular Respiration Harvesting Chemical Energy ATP.
AP Biology Cellular Respiration Cellular Respiration Harvesting Chemical Energy ATP.
Modified from Kim Foglia Today I will… 1.Describe the process of glycolysis. 2.State the reactants and products of glycolysis.
Cellular Respiration Harvesting Chemical Energy ATP.
AP Biology WELCOME BACK 132 Days till the May 14 th, 2012 AP Biology Exam!
Cellular Respiration: Harvesting Chemical Energy
Ch.9 Cellular Respiration A.P. Biology What’s the point? The point is to make ATP ! ATP.
How Cells Harvest Chemical Energy
CELLULAR RESPIRATION How Cells Harvest Chemical Energy.
AP Biology Aim: How do we obtain energy (ATP) from our food? Do Now: Explain the diagram shown here – Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in.
Energy Processing Systems: An Overview Big Questions How do living systems process energy? How do the energy processing systems of autotrophs and heterotrophs.
Cellular Respiration Cellular Respiration Harvesting Chemical Energy ATP.
AP Biology Cellular Respiration Harvesting Chemical Energy Adapted from Ms. Lisa Miller’s AP Biology Notes.
AP Biology Cellular Respiration Harvesting Chemical Energy ATP.
Cellular Respiration Harvesting Chemical Energy ATP.
CELLULAR RESPIRATION Harvesting chemical energy ATP.
Cellular Respiration Harvesting Chemical Energy
Lecture #4Date _________ Chapter 9~ A Musical Journey Through Cellular Respiration Objective: How do organisms produce energy for themselves to do work?
Introduction to Cell Respiration chp 7 Life is Work!!!
AP Biology Chapter 8. Cellular Respiration Harvesting Chemical Energy.
AP Biology Agenda 2/18  Cell Respiration Notes  Cell Respiration Modeling Activity  Homework: Cell Respiration Case Study, Cell Resp Worksheet, Watch.
AP Biology Cellular Respiration Harvesting Chemical Energy.
RESPIRATION Prof Nirupama Mallick
What do we know?? Why do we have to eat?
Chapter 9~ Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Chapter 9. Cellular Respiration STAGE 1: Glycolysis
How Cells Harvest Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration Harvesting Chemical Energy
Presentation transcript:

Cellular Respiration Harvesting Chemical Energy

Important parts

Harvesting stored energy  Energy is stored in organic molecules  carbohydrates, fats, proteins  Heterotrophs eat these organic molecules  food  digest organic molecules to get…  raw materials for synthesis  fuels for energy  controlled release of energy  “burning” fuels in a series of step-by-step enzyme-controlled reactions

Harvesting stored energy  Glucose is the model  catabolism of glucose to produce ATP C 6 H 12 O 6 6O 2 ATP6H 2 O6CO 2  + ++ CO 2 + H 2 O + heat fuel (carbohydrates) COMBUSTION = making a lot of heat energy by burning fuels in one step RESPIRATION = making ATP (& some heat) by burning fuels in many small steps CO 2 + H 2 O + ATP (+ heat) ATP glucose glucose + oxygen  energy + water + carbon dioxide respiration O2O2 O2O2 + heat enzymes ATP

How do we harvest energy from fuels?  Digest large molecules into smaller ones  break bonds & move electrons from one molecule to another  as electrons move they “carry energy” with them  that energy is stored in another bond, released as heat or harvested to make ATP e-e- ++ e-e- +– loses e-gains e-oxidizedreduced oxidationreduction redox e-e-

How do we move electrons in biology?  Moving electrons in living systems  electrons cannot move alone in cells  electrons move as part of H atom  move H = move electrons p e + H + H +– loses e-gains e-oxidizedreduced oxidationreduction C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ oxidation reduction H e-e-

Oxidation & reduction  Oxidation  removing H  loss of electrons  releases energy  exergonic  Reduction  adding H  gain of electrons  stores energy  endergonic C 6 H 12 O 6 6O 2 6CO 2 6H 2 OATP  +++ oxidation reduction

Moving electrons in respiration  Electron carriers move electrons by shuttling H atoms around  NAD +  NADH (reduced)  FAD +2  FADH 2 (reduced) + H reduction oxidation P O–O– O–O– O –O–O P O–O– O–O– O –O–O C C O NH 2 N+N+ H adenine ribose sugar phosphates NAD + nicotinamide Vitamin B3 niacin P O–O– O–O– O –O–O P O–O– O–O– O –O–O C C O NH 2 N+N+ H NADH carries electrons as a reduced molecule H

Overview of cellular respiration  3 metabolic stages  Anaerobic respiration 1. Glycolysis  respiration without O 2  in cytosol  Aerobic respiration  respiration using O 2  in mitochondria 2. Krebs cycle 3. Electron transport chain and chemiosmosis C 6 H 12 O 6 6O 2 ATP6H 2 O6CO 2  +++ (+ heat )

Glycolysis  Breaking down glucose  “glyco – lysis” (splitting sugar)  ancient pathway which harvests energy  where energy transfer first evolved  transfer energy from organic molecules to ATP  still is starting point for ALL cellular respiration  but it’s inefficient  generate only 2 ATP for every 1 glucose  occurs in cytosol glucose      pyruvate 2x2x 6C3C

Evolutionary perspective  Prokaryotes  first cells had no organelles  Anaerobic atmosphere  life on Earth first evolved without free oxygen (O 2 ) in atmosphere  energy had to be captured from organic molecules in absence of O 2  Prokaryotes that evolved glycolysis are (?) ancestors of all modern life  ALL cells still utilize glycolysis

Pyruvate is a branching point Pyruvate O2O2 O2O2 mitochondria Krebs cycle aerobic respiration fermentation anaerobic respiration

Fermentation (anaerobic)  Bacteria, yeast 1C 3C2C pyruvate  ethanol + CO 2  Animals, some fungi pyruvate  lactic acid 3C  beer, wine, bread  anaerobic exercise (no O 2 ) NADHNAD + NADHNAD + back to glycolysis 

 Krebs cycle produces large quantities of electron carriers  NADH  FADH 2  go to Electron Transport Chain! Electron Carriers = Hydrogen Carriers H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP ADP + P i

Electron Transport Chain intermembrane space mitochondrial matrix inner mitochondrial membrane NAD + Q C NADH H 2 O H+H+ e–e– 2H + +O2O2 H+H+ H+H+ e–e– FADH NADH dehydrogenase cytochrome bc complex cytochrome c oxidase complex FAD e–e– H H  e- + H + NADH  NAD + + H H p e Building proton gradient! Creates a proton gradient!

And how do we make ATP?  ATP synthase enzyme  H + flows through it  conformational changes  bond P i to ADP to make ATP  The ETC’s H + gradient  allows the H + to flow down concentration gradient through ATP synthase  ADP + P i  ATP H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP ADP P +

Summary of cellular respiration  Where did the glucose come from?  Where did the O 2 come from?  Where did the CO 2 come from?  Where did the CO 2 go?  Where did the H 2 O come from?  Where did the ATP come from?  What else is produced that is not listed in this equation?  Why do we breathe? C 6 H 12 O 6 6O 2 6CO 2 6H 2 O~40 ATP  +++