Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Ultra Peripheral Collisions at RHIC Coherent Coupling Coherent Coupling to both nuclei: photon~Z 2, Pomeron~A 4/3 Small transverse momentum p t ~ 2h 
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
1 1.  - ray production by the reactions Li(p,  )Be and B(p,  )C tested at the Legnaro INFN Laboratory 2.Monte Carlo simulation of point-like Americium.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
An Electrostatic Storage Ring for Low Energy Electron Collisions T J Reddish †, D R Tessier †, P Hammond *, A J Alderman *, M R Sullivan †, P A Thorn †
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Prospects to measure 8 B production VLADIMIR KRAVCHUK Laboratori Nazionali di Legnaro, Italy EUROnu week in Strasbourg 1-4 June 2010.
Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.
The INFN Italy EXOTIC group Milano, Napoli, Padova, NIPNE Romania, Crakow Poland. Presented by C.Signorini Dept. of Physics and Astronomy Padova (Italy):
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Meeting on gas and Si detectors for the PRISMA and VAMOS spectrometers GANIL, October 2nd, 2008 E. Fioretto - LNL1 Status of the magnetic spectrometer.
Frictional Cooling A.Caldwell MPI f. Physik, Munich FNAL
Measuring fusion excitation functions with RIBs using the stacked target technique: problems and possible solutions Maria Fisichella Nucleus Nucleus 2015.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
Villa Olmo, Como October 2001F.Giordano1 SiTRD R & D The Silicon-TRD: Beam Test Results M.Brigida a, C.Favuzzi a, P.Fusco a, F.Gargano a, N.Giglietto.
VAMOS « Hot » results and perspectives * Spectroscopy of n-rich nuclei produced by fission * New gas-filled spectrometer-separator for fusion Getting ready.
A realistic simulation of the AGATA Demonstrator +PRISMA Spectrometer Elif INCE, Istanbul University 7 th AGATA Week, July 2008.
Beam on Target Diagnostics Beam on Target Meeting 2013 March Tom Shea.
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
Accelerator Laboratory, Physics Department (JYFL) University of Jyväskylä P.O. Box 35 (YFL) FI Jyväskylä Finland MARA recoil-mass separator at JYFL.
Ancillary/Complementary detectors for the AD at LNL.
Experimental considerations about  physics at DA  NE2 F. Anulli, D. Babusci, G. Pancheri Laboratori Nazionali di Frascati  Physics window at DA  NE2.
1 straw tube signal simulation A. Rotondi PANDA meeting, Stockolm 15 June 2010.
IPHC, Strasbourg / GSI, Darmstadt
at TSL high energy neutron facility
for the LNL-Ganil collaboration
Direct measurement of 4He(12C,16O)g reaction at KUTL*
Peripheral collisions Hans-Jürgen Wollersheim
Beam dynamics of Super-FRS and MM requirements
Ionization detectors ∆
Ch. THEISEN – CEA Saclay MUSETT: the segmented Si array for the focal plane of the VAMOS spectrometer Ch. THEISEN – CEA Saclay.
Variable Mode High Acceptance Spectrometer
Rare Isotope Spectroscopic INvestigation at GSI
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Recent Highlights and Future Plans at VAMOS
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Rare Isotope Spectroscopic INvestigation at GSI
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro

Measurements of small fusion cross sections are experimentally challenging Motivation C.L. Jiang et al., Phys. Rev. Lett (2002) : 60 Ni+ 89 Y C.L. Jiang et al., Phys. Rev. Lett (2004) : 64 Ni+ 64 Ni Example: the hindrance phenomenon

Principles of operation of a gas-filled magnetic spectrometer Charge states merge to a first approximation, B  does not depend on v vacuum gas  Poor resolution (no single mass resolution)  Basically a high-efficiency separator  Typically operated at 0° for the detection of fusion evaporation residues

Problems with magnetic rigidity Magnetic rigidity 58 Ni 112 Sn 148 Sm 176 Hf 208 Pb 252Fm according to Betz  The average charge state can be very low in gas for a slow, heavy ion  for a central trajectory Prisma is limited to A<180  By using non-central trajectory we can reach B  =1.5Tm Prisma max. rigidity for central trajectory

Magnetic rigidity of Evaporation Residues Projectile and ER rigidity as a function of the target E=V B for all practical cases Forget reverse kinematics! S Ni Ca Se 1.5Tm projectile CN

3230 mm 800 mm EFB GFM operation of Prisma. General considerations the drift-chamber + detectors can move back 70cm and more Drift chamber not to be operated in gas: mult.scattering with no focusing elements cannot optimize gas pressure in magnets Gas filling: 4 He is the most popular but other gases should be tested detector C-foil window Gate valve Gas filling

EFB 1.2Tm The setup for the GFM operation of Prisma Prisma at 0° 1.5Tm DRIFT Detector chamber C-foil window 50  g/cm 2 beam dump detector shifted 30cm

new chamber for GFM det.

Si strip detectors for the gas-filled mode operation Junction side Matrix of 2 x 3 Si detectors Thickness ~ 300  m Active area = 5 x 5 cm 2, 16 resistive strips Ohmic side 3 mm

Electronics scheme 100  PA A A A ADC Discr Bit Pattern PA ADC A Energy X Pos. Y Pos. CFD TDC Beam reference Trigger Delay = 100 ns Home made Electronics (PAs and shaping amplifiers) INFN NAPOLI

Summary and program Test of electronics Test of C-foil window with different gases In beam test :  Pre-amplifiers: crosstalk Preliminary tests with Si and α-source : signals OK 58 Ni (200 MeV) Au, 60° : end of june PRISMA in GFM : adequate Bρ up to masses A~200 Focal plane detector : 6 Si strips detectors  10 × 15 cm 2 Aim : fusion reactions studies ; no super heavy elements     Under progress Windows from GSI and LNL Test of spot size, transmission, beam separation vs energy and gas… Under progress

ANAMARI Code 40 Ca+ 172 Dy 1Torr X Y 32 S+ 184 W 1Torr Y X 65cm 100cm 150cm 200cm  Section by section calculation using mid-section energy and  via 1 st order transfer matrix  Straggling added at the end of each section (assuming gaussian distribution )  Charge exchange not taken into account (ok if mean free path is short)  Very fast Without charge exchange one cannot optimize the pressure one cannot estimate the background being implemented

48 Ca (200MeV) Yb  216 Th + 4n 1Torr He 216 Th 48 Ca ANAMARI Code The program assumes a full charge state equilibration. As we will see, it may not be appropriate

TRAJIG Code 48 Ca (200MeV) Yb  216 Th + 4n 1Torr 36 S (160MeV) W  216 Th + 4n 1Torr  65cm  100cm  150cm  200cm X Y  4 th order Runge-Kutta trajectory calculations  Straggling added step by step, according to G.Amsel, G.Battistig, A.L’Hoir Nuc. Instr. Methods B201 (2003) 325  Charge exchange included. Cross sections from A.S.Schlachter et al. Phys.Rev. A11 (1983) 3372 assuming detailed balance and 1e exchange approximation.  Yields reasonable results from high vacuum to large pressures above: first calculations without charge exchange

TRAJIG Code Approximations used: schematic (ideal) optical elements (no fringing field) cross sections and charge distributions are calculated only once per section, at the average estimated energy. The charge-exchange cross sections are estimated by single electron loss or capture approximation plus... empirical adjustment in order to reproduce the assumed charge distribution The most critical approximations are related to the charge-exchange charge distribution: R.O.Sayer, Revue Phys. Appl. 12, 1977, cross sections: A.S.Schlachter et al. Phys.Rev. A11 (1983) 3372

Trajig calculation 0° aperture gas: Helium 197 Au mb mb mb 0.1 mb 0.2 mb 0.5 mb 1 mb 2 mb 5 mb 10 mb 197 Au

Trajig calculation 0° aperture gas: Helium charge-exchange contribution multiple scattering contribution

Trajig calculation 58 Ni 197 Au 0° aperture 0.01mb 0.1mb 0.5mb 1 mb 2 mb 3 mb 5 mb

Trajig calculation 58 Ni 197 Au 3° aperture 0.01mb 0.1mb 0.5mb 1 mb 2 mb 3 mb 5 mb 58 Ni 197 Au

Calculated 2D XY spectrum 197 Au 58 Ni Focal plane detector 2 mbar of He 60° 3° aperture

Trajig 0° aperture 0.01mb 0.1mb 0.5mb 1 mb 2 mb 3 mb 5 mb 58 Ni 197 Au gas: Argon

48 Ca (200MeV) Yb  216 Ra + 2p2n 216 Ra 172 Yb 48 Ca no charge exchange 2mb He with charge exchange A fusion example

2mb Ar ER 48 Ca 48 Ca (200MeV) Yb  216 Ra + 2p2n 10mb He ER 48 Ca other options

How does GFM Prisma compare? Sep.LaboratoryConfigurationMain topic RITUJYFLQDQQHE spect. Z<103 GARISRIKENDQQDSHE prod. & chem. DGFRSFLNRDQQSHE production BGSLBLQDDSHE prod. & chem. TASCAGSIDQQSHE prod. React. & Chem. SHE spectr. Z>104 PRISMALNLQDH.I. fusion reaction ? we cannot get into the SHE competition (accelerator and rigidity limitation) we are ill equipped to compete in the HE spectroscopy (not with GFM) a possibility is fusion reaction studies: it depends strongly on beam rejection, necessary to measure at low cross sections and reliability of the simulations.