Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.

Slides:



Advertisements
Similar presentations
FINITE WORD LENGTH EFFECTS
Advertisements

Chapter 8. FIR Filter Design
Digital Filter Banks The digital filter bank is set of bandpass filters with either a common input or a summed output An M-band analysis filter bank is.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Filtering Filtering is one of the most widely used complex signal processing operations The system implementing this operation is called a filter A filter.
Digital Signal Processing – Chapter 11 Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah
LINEAR-PHASE FIR FILTERS DESIGN
6.1 signal flow graph representation of linear constant- coefficient difference equations 6.2 basic structures for IIR system direct forms
Fast Fourier Transforms
T Digital Signal Processing and Filtering
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
Lecture 9: Structure for Discrete-Time System XILIANG LUO 2014/11 1.
Unit III FIR Filter Design
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
1 Diagramas de bloco e grafos de fluxo de sinal Estruturas de filtros IIR Projeto de filtro FIR Filtros Digitais.
Filter Design Techniques
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Chapter 6 Digital Filter Structures
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Biomedical Signal processing Chapter 6 structures for discrete- time system Zhongguo Liu.
IIR Filter design (cf. Shenoi, 2006) The transfer function of the IIR filter is given by Its frequency responses are (where w is the normalized frequency.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright © 2001, S. K. Mitra Digital Filter Structures The convolution sum description of an LTI discrete-time system be used, can in principle, to implement.
Husheng Li, UTK-EECS, Fall  Study how to implement the LTI discrete-time systems.  We first present the block diagram and signal flow graph. 
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Z TRANSFORM AND DFT Z Transform
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Transform Analysis of LTI systems 主講人:虞台文. Content The Frequency Response of LTI systems Systems Characterized by Constant- Coefficient Difference Equations.
1 Digital Signal Processing. 2 Digital Signal Processing Topic 6: Filters-Introduction 1. Simple Filters 2. Ideal Filters 3. Linear Phase and FIR filter.
1 Digital Signal Processing Digital Signal Processing  IIR digital filter structures  Filter design.
Digital Signal Processing
Digital Filter Realization
Finite Precision Numerical Effects
Transform Analysis of LTI Systems Quote of the Day Any sufficiently advanced technology is indistinguishable from magic. Arthur C. Clarke Content and Figures.
Chapter 4 LTI Discrete-Time Systems in the Transform Domain
Structures for Discrete-Time Systems
Digital Filter Structures
Signals and Systems, 2/E by Simon Haykin and Barry Van Veen Copyright © 2003 John Wiley & Sons. Inc. All rights reserved. Figure 4.1 (p. 343) FS and FT.
DEPARTMENTT OF ECE TECHNICAL QUIZ-1 AY Sub Code/Name: EC6502/Principles of digital Signal Processing Topic: Unit 1 & Unit 3 Sem/year: V/III.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Fast Fourier Transforms. 2 Discrete Fourier Transform The DFT pair was given as Baseline for computational complexity: –Each DFT coefficient requires.
Structures for Discrete-Time Systems 主講人:虞台文. Content Introduction Block Diagram Representation Signal Flow Graph Basic Structure for IIR Systems Transposed.
Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W.
Signals and Systems Lecture Filter Structure and Quantization Effects.
Chapter 6 Discrete-Time System. 2/90  Operation of discrete time system 1. Discrete time system where and are multiplier D is delay element Fig. 6-1.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Third Edition, by Allan R. Hambley, ©2005 Pearson Education, Inc. CHAPTER 6 Frequency Response, Bode.
Generalized Linear Phase Quote of the Day The mathematical sciences particularly exhibit order, symmetry, and limitation; and these are the greatest forms.
Chapter 6. Digital Filter Structures and Designs Section
Finite Impulse Response Filtering EMU-E&E Engineering Erhan A. Ince Dec 2015.
EC1358 – DIGITAL SIGNAL PROCESSING
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
Relationship between Magnitude and Phase Quote of the Day Experience is the name everyone gives to their mistakes. Oscar Wilde Content and Figures are.
1 BIEN425 – Lecture 9 By the end of the lecture, you should be able to: –Describe the properties of ideal filters –Describe the linear / logarithm design.
Chapter 4 Structures for Discrete-Time System Introduction The block diagram representation of the difference equation Basic structures for IIR system.
Application of digital filter in engineering
IIR Filter design (cf. Shenoi, 2006)
Figure 8.1 (p. 615) Time-domain condition for distortionless transmission of a signal through a linear time-invariant system. Signals and Systems, 2/E.
Structures for Discrete-Time Systems
Figure 11.1 Linear system model for a signal s[n].
Lattice Struture.
EEE4176 Applications of Digital Signal Processing
لجنة الهندسة الكهربائية
Lect5 A framework for digital filter design
UNIT V Linear Time Invariant Discrete-Time Systems
Quantization in Implementing Systems
Chapter 6 Discrete-Time System
Zhongguo Liu Biomedical Engineering
Zhongguo Liu Biomedical Engineering
Fixed-point Analysis of Digital Filters
Presentation transcript:

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.1 Block diagram symbols. (a) Addition of two sequences. (b) Multiplication of a sequence by a constant. (c) Unit delay.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.2 Example of a block diagram representation of a difference equation.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.3 Block diagram representation for a general N th -order difference equation.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.4 Rearrangement of block diagram of Figure 6.3. We assume for convenience that N = M. If N ≠ M, some of the coefficients will be zero.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.5 Combination of delays in Figure 6.4.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.6 Direct form I implementation of Eq. (6.16).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.7 Direct form II implementation of Eq. (6.16).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.8 Example of nodes and branches in a signal flow graph.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.9 Example of a signal flow graph showing source and sink nodes.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.10 (a) Block diagram representation of a 1 st -order digital filter. (b) Structure of the signal flow graph corresponding to the block diagram in (a).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.11 Signal flow graph of Figure 6.10(b) with the delay branch indicated by z −1.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.12 Flow graph not in standard direct form.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.13 Direct form I equivalent of Figure 6.12.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.14 Signal flow graph of direct form I structure for an N th -order system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.15 Signal flow graph of direct form II structure for an N th -order system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.16 Direct form I structure for Example 6.4.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.17 Direct form II structure for Example 6.4.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.18 Cascade structure for a 6 th -order system with a direct form II realization of each 2 nd -order subsystem.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.19 Cascade structures for Example 6.5. (a) Direct form I subsections. (b) Direct form II subsections.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.20 Parallel form structure for 6 th -order system (M = N = 6) with the real and complex poles grouped in pairs.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.21 Parallel form structure for Example 6.6 using a 2 nd -order system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.22 Parallel form structure for Example 6.6 using 1 st -order systems.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.23 (a) System with feedback loop. (b) FIR system with feedback loop. (c) Noncomputable system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.24 (a) Flow graph of simple 1 st -order system. (b) Transposed form of (a). (c) Structure of (b) redrawn with input on left.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.25 Direct form II structure for Example 6.8.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.26 Transposed direct form II structure for Example 6.8.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.27 General flow graph resulting from applying the transposition theorem to the direct form I structure of Figure 6.14.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.28 General flow graph resulting from applying the transposition theorem to the direct form II structure of Figure 6.15.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.29 Direct form realization of an FIR system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.30 Transposition of the network of Figure 6.29.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.31 Cascade form realization of an FIR system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.32 Direct form structure for an FIR linear-phase system when M is an even integer.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.33 Direct form structure for an FIR linear-phase system when M is an odd integer.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.34 Symmetry of zeros for a linear-phase FIR filter.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.35 One section of the lattice structure for FIR lattice filters. (a) Block diagram representation of a two-port building block (b) Equivalent flow graph.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.36 Cascade connection of M basic building block sections.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.37 Lattice flow graph for an FIR system based on a cascade of M two-port building blocks of Figure 6.35(b).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.38 Algorithm for converting from k-parameters to FIR filter coefficients.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.39 Algorithm for converting from FIR filter coefficients to k-parameters.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.40 Flow graphs for example. (a) Direct form. (b) Lattice form (coefficients rounded).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.41 One stage of computation for an all-pole lattice system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.42 All-pole lattice system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.43 Signal flow graph of IIR filter; (a) direct form, (b) lattice form.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.44 Nonlinear relationships representing two’s-complement (a) rounding and (b) truncation for B = 2.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.45 Two’s-complement rounding. (a) Natural overflow. (b) Saturation.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.46 Implementation of discrete-time filtering of an analog signal. (a) Ideal system. (b) Nonlinear model. (c) Linearized model.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.1 UNQUANTIZED DIRECT-FORM COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.47 IIR coefficient quantization example. (a) Log magnitude for unquantized elliptic bandpass filter. (b) Magnitude in passband for unquantized (solid line) and 16-bit quantized cascade form (dashed line).

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.2 ZEROS AND POLES OF UNQUANTIZED 12TH-ORDER ELLIPTIC FILTER.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.48 IIR coefficient quantization example. (a) Poles and zeros of H(z) for unquantized coefficients. (b) Poles and zeros for 16-bit quantization of the direct form coefficients.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.3 UNQUANTIZED CASCADE-FORM COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.4 SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS FOR A 12TH-ORDER ELLIPTIC FILTER

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.49 Direct form implementation of a complex-conjugate pole pair.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.50 Pole-locations for the 2 nd -order IIR direct form system of Figure (a) Four-bit quantization of coefficients. (b) Seven-bit quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.51 Coupled form implementation of a complex-conjugate pole pair.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.52 Pole locations for coupled form 2 nd -order IIR system of Figure (a) Four-bit quantization of coefficients. (b) Seven-bit quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.53 Representation of coefficient quantization in FIR systems.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.5 UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM FIR LOWPASS FILTER (M = 27)

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.54 FIR quantization example. (a) Log magnitude for unquantized case. (b) Approximation error for unquantized case. (Error not defined in transition band.) (c) Approximation error for 16-bit quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.54 (continued) (d) Approximation error for 14-bit quantization. (e) Approximation error for 13-bit quantization. (f) Approximation error for 8-bit quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.55 Effect of impulse response quantization on zeros of H(z). (a) Unquantized. (b) 16-bit quantization. (c) 13-bit quantization. (d) 8-bit quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.56 Subsystem to implement 4 th -order factors in a linear-phase FIR system such that linearity of the phase is maintained independently of parameter quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.57 Models for direct form I system. (a) Infinite-precision model. (b) Nonlinear quantized model. (c) Linear-noise model.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.58 Probability density function for quantization errors. (a) Rounding. (b) Truncation.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.59 Linear-noise model for direct form I with noise sources combined.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure st -order linear noise model.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.61 Linear-noise models for direct form II. (a) Showing quantization of individual products. (b) With noise sources combined.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.62 Scaling of direct form systems. (a) Direct form I. (b) Direct form II.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.63 Scaled 1 st -order system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Table 6.6 COEFFICIENTS FOR ELLIPTIC LOWPASS FILTER IN CASCADE FORM

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.64 Models for 6 th -order cascade system with transposed direct form II subsystems. (a) Infinite-precision model. (b) Linear-noise model for scaled system, showing quantization of individual multiplications. (c) Linear-noise model with noise sources combined.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.65 Pole–zero plot for 6 th -order system of Figure 6.64, showing pairing of poles and zeros.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.66 Frequency-response functions for example system. (a) 20 log 10 |H 1 (e jω )|. (b) 20 log 10 |H 2 (e jω )|. (c) 20 log 10 |H 3 (e jω )|.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.66 (continued) (d) 20 log 10 |H’ 1 (e jω )|. (e) 20 log 10 |H’ 1 (e jω )H’ 2 (e jω )|. (f) 20 log 10 |H’ 1 (e jω )H’ 2 (e jω )H’ 3 (e jω )| = 20 log 10 |H’(e jω )|.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.67 Output noise power spectrum for 123 ordering (solid line) and 321 ordering (dashed line) of 2 nd -order sections.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.68 Direct form realization of an FIR system. (a) Infinite-precision model. (b) Linear-noise model.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure st -order IIR system. (a) Infinite-precision linear system. (b) Nonlinear system due to quantization.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure 6.70 Response of the 1st-order system of Figure 6.69 to an impulse. (a) a = ½. (b) a = −½.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.3

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.3 (continued)

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.5

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.6

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.8

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.9

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.10

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.12

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.16

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.18

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.23

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.25

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.27

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.28-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.28-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.29

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.31

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.32

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.33-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.33-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.34-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.34-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.35-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P Polyphase structure of the system.

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.35-3

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.35-4

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.36-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.36-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.36-3

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.37

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.40-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.40-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.41

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.42

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.43-1

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.43-2

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.45

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.47

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.48

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.49

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.52

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.53

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.54

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.55

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.56

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.57

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.57

Copyright ©2010, ©1999, ©1989 by Pearson Education, Inc. All rights reserved. Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim Ronald W. Schafer Figure P6.59