OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Experience in a Microwave Spectroscopy Lab BRENDAN FRY ACKNOWLEDGMENTS: Dr. Stephen Kukolich Adam Daly Chandana Karunatilaka Space Grant Symposium April.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
DMITRY G. MELNIK 1 MING-WEI CHEN 1, JINJUN LIU 2, and TERRY A. MILLER 1, and ROBERT F. CURL 3 and C. BRADLEY MOORE 4 EFFECTS OF ASYMMETRIC DEUTERATION.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
OSU – June STEPHEN KUKOLICH, Chemistry Dept., University of Arizona, MICHAEL PALMER School of Chemistry, University of Edinburgh, PETER GRONER,
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
OSU – June – SGK1 STEVE KUKOLICH, Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona MICROWAVE MEASUREMENTS.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
OSU – June CHAKREE TANJAROON, ADAM DALY AND STEPHEN G. KUKOLICH, Department of Chemistry, The University of Arizona, Tucson, Arizona THE.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
The Submillimeter/THz Spectrum of AlH (X 1 Σ + ), CrH (X 6 Σ + ), and SH + (X 3 Σ - ) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
ACS - PRF1 MICROWAVE STRUCTURE MEASUREMENTS  Microwave spectroscopy measurements have yielded the first accurate gas- phase structural parameters for.
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
FTIR and DFT Study of the Vibrational Spectrum of SiC 5 Trapped in Solid Ar T.H. Le, C.M.L. Rittby and W.R.M. Graham Department of Physics and Astronomy.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
High-Resolution Infrared Spectrum of the  1 band of 5-C5H5NiNO
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
1Kanagawa Institute of Technology 3Georgia Southern University
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Synthesis of Deuterocycloheptatrienyl-cyclopentadienyl-titanium
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Infrared Spectral
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
MICROWAVE SPECTRA, MOLECULAR STRUCTURE AND AROMATIC CHARACTER OF BN-NAPHTHALENE (4A,8A-AZABORANAPHTHALENE) AARON M. PEJLOVAS, STEPHEN G. KUKOLICH, University.
Presentation transcript:

OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich Department of Chemistry University of Arizona, Tucson 85721

OSU-05 TA 102 Ethynylferrocene C 12 H 10 Fe  ETHFE  Singly-Substituted Ferrocene (#6)  Asymmetric top.I a ≠ I b ≠ I c  Has a & b dipole mom. PROPERTIES  Three Fe isotopes. 56 Fe(~92%), 54 Fe(~5.8%), 57 Fe(~2.1%)  C s symmety - a-b mirror plane

OSU-05 TA Previous work Spectroscopic studies [ 57 Fe-NMR / 13 C-NMR]. No previous gas-phase structural data ! Motivation: Important precursor for Polymeric ferrocenyl compounds. Organic conductors / Opto-electronics X-ray diffraction studies. Electrochemical studies.

OSU-05 TA 104 EXPERIMENTAL DETAILS - ETHFE used without further purification. - Heated both ETHFE & DETHFE  60 0 C - Spectra of 56 Fe, 54 Fe, 57 Fe, 13 C & DETHFE 56 Fe  4 – 12 GHz range. - DETHFE Modified synthesis of ferrocenyl propyne  (using D 2 O) -The ETFE was treated with 1.6M n-butyllithium (Li n Bu) in hexane, (Li replaced the acidic H on acetylene) and then with D 2 O, (D replaced H) and the product sublimed G.Doisneau, G. Balavoine, T. Fillebeen-Khan; J.Organomet.Chem, 425, 113, 1992.

OSU-05 TA 105 MEASURED LINES- No. of transitions IsotopomerDipole 39ETH 56 Fea & b 11ETH 54 Fea & b 5 eachETH 57 Fe & C’s a 24DETH 56 Fea & b

OSU-05 TA 106 Fourier Transformed spectrum of the 4 13  3 12 transition for ETHFE. Frequencies in kHz relative to kHz. - The spectrum is an average of five shots. J’ = 4 13  J = 3 12

OSU-05 TA 107 RESULTS FROM FITTING THE TRANSITION FREQUENCIES - Spectral fits using SPFIT ¥ least-squares fitting program with a standard rigid-rotor Hamiltonian C / 1 H / 56 Fe  Used 5 adjustable parameters [ A, B, C,  J,  K ]. ¥ H.M.Pickett, J.Mol.Spec: 1991, 148, DETHFE  4 adjustable parameters [ A, B, C,  J] Fe / 57 Fe / 13 C  3 adjustable parameters [A, B, C ].

OSU-05 TA 108 Spectral parameters obtained for the different isotopomers of ETHFE and DETHFE. (in MHz) a Fixed

OSU-05 TA 109 Structure Determination (least squares fit) - Altogether 24 rotational constants  Four parameters. P(1) = r(Fe-Cp) P(2) = r(C-C) of Cp ring P(3) = angle(Ethynyl group & Cp plane) i.e. (tilt – angle) P(4) = r(C-H) of Ethynyl group. r(C-H) of Cp / r(C1-C1’) & r(C1’-C2’)  Fixed at DFT values. - Fit deviation  0.02 MHz. - Initial geometry  From DFT (B3PW91) calculations.

OSU-05 TA 1010 Structural Fit results - C 1 & C 6 are eclipsed  Consistent with DFT -Ethynyl group  pointing away from the plane of Cp ring & away from the Fe atom. - “Tilt angle – 2.74(1)°” - r(Fe-Cp) = 1.647(4) Å - r(C 2 ’-H et ) = 1.053(2) Å - r(C 1 -H et ) = 3.691(2) Å

OSU-05 TA 0911 Structural parameters obtained for the ETHFE complex.

OSU-05 TA 1012 Comparison of structural parameters ParameterX-rayDFTThis workFree acetylene r (C 2 ’ – H et ) / Å (1)1.058 ParameterX-rayKraitchmanStructure Fit Avg: r (Fe-C) / Å (6)2.049(5) r (Fe-H et ) / Å (8)5.16(2)

OSU-05 TA Comparing 3 singly-substituted ferrocenes - - Two Cp rings are eclipsed  Consistent with DFT. ( E staggered – E Eclipsed ) = 3 kJ / mol (ETHFE) MoleculeTilt angle / deg: Chloroferrocene 2.7(6)  Dimethyl- ferrocene 2.66(2)  ETHFE (X-ray) 1.7  ETHFE (This work) 2.74(1)  “Drooping away from Fe”

OSU-05 TA 1014 The Structural parameters of different ferrocene compounds of the type, (C5H4-X)Fe(C5H4-Y). Relationship between r(Fe-Cp) to the Inductive Hammett Parameter ( I ) NameXYr (C-C) / År (Fe –Cp) / Å  I Chloroferrocene я ClH1.433(2)1.610(5)0.47 Bromoferrocene я BrH1.433(1)1.630(2)0.44 Methylferrocene я CH 3 H1.4289(2)1.6528(3)-0.04 Dimethylferrocene я CH (5)1.670(2)-0.08 ETHFE * CΞCHH1.4315(6)1.6464(1)0.21 Ferrocene † HH1.440(2)1.661(2)0.00 Я Kukolich et. Al. * Present work, † A.Haaland and J.E.Nilsson; Acta. Chem. Scan. 23, 2653,  Electron Diffraction studies

Linear correlation between the gas-phase structural parameter r(Fe-Cp) and the Inductive Hammett parameter  I.  I r(Fe-Cp) / Å Gas-phase r (Fe-Cp) of Ferrocene. = Å Electron Diffraction value for Å Ferrocene  1.661(2) Å

OSU-05 TA 1016 Acknowledgements We thank Prof. Robin Polt, University of Arizona, for useful suggestions during the synthesis of the deuterated Ethynylferrocene. N$F - This material is based upon work supported by the National Science Foundation under Grant No. CHE This support from the National Science Foundation is gratefully acknowledged Department of Chemistry, University of Arizona.