Introduction Paul J. Hurtado Mathematical Biosciences Institute (MBI), The Ohio State University 19 May 2014 (Monday a.m.)

Slides:



Advertisements
Similar presentations
Ordinary Least-Squares
Advertisements

Probabilistic models Haixu Tang School of Informatics.
Bayesian Estimation in MARK
Use of moment generating functions. Definition Let X denote a random variable with probability density function f(x) if continuous (probability mass function.
The General Linear Model. The Simple Linear Model Linear Regression.
STAT 270 What’s going to be on the quiz and/or the final exam?
Chapter 1 Probability Theory (i) : One Random Variable
Probability theory 2010 Order statistics  Distribution of order variables (and extremes)  Joint distribution of order variables (and extremes)
Maximum likelihood (ML) and likelihood ratio (LR) test
Random-Variate Generation. Need for Random-Variates We, usually, model uncertainty and unpredictability with statistical distributions Thereby, in order.
Probability Densities
Maximum likelihood Conditional distribution and likelihood Maximum likelihood estimations Information in the data and likelihood Observed and Fisher’s.
G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Statistical Data Analysis: Lecture 2 1Probability, Bayes’ theorem 2Random variables and.
Maximum likelihood (ML)
1 Engineering Computation Part 6. 2 Probability density function.
Basics of Statistical Estimation. Learning Probabilities: Classical Approach Simplest case: Flipping a thumbtack tails heads True probability  is unknown.
A gentle introduction to Gaussian distribution. Review Random variable Coin flip experiment X = 0X = 1 X: Random variable.
Presenting: Assaf Tzabari
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Course outline and schedule Introduction (Sec )
2. Random variables  Introduction  Distribution of a random variable  Distribution function properties  Discrete random variables  Point mass  Discrete.
Maximum likelihood (ML)
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics, 2007 Instructor Longin Jan Latecki Chapter 7: Expectation and variance.
Probability Theory Summary
Chapter Two Probability Distributions: Discrete Variables
Binary Variables (1) Coin flipping: heads=1, tails=0 Bernoulli Distribution.
: Appendix A: Mathematical Foundations 1 Montri Karnjanadecha ac.th/~montri Principles of.
STAT 552 PROBABILITY AND STATISTICS II
B. RAMAMURTHY EAP#2: Data Mining, Statistical Analysis and Predictive Analytics for Automotive Domain CSE651C, B. Ramamurthy 1 6/28/2014.
Overview G. Jogesh Babu. Probability theory Probability is all about flip of a coin Conditional probability & Bayes theorem (Bayesian analysis) Expectation,
General information CSE : Probabilistic Analysis of Computer Systems
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
IRDM WS Chapter 2: Basics from Probability Theory and Statistics 2.1 Probability Theory Events, Probabilities, Random Variables, Distributions,
Moment Generating Functions
Traffic Modeling.
Chapter 14 Monte Carlo Simulation Introduction Find several parameters Parameter follow the specific probability distribution Generate parameter.
Chapter 10 Introduction to Simulation Modeling Monte Carlo Simulation.
Exam I review Understanding the meaning of the terminology we use. Quick calculations that indicate understanding of the basis of methods. Many of the.
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
Kalman Filter (Thu) Joon Shik Kim Computational Models of Intelligence.
Use of moment generating functions 1.Using the moment generating functions of X, Y, Z, …determine the moment generating function of W = h(X, Y, Z, …).
ECE 8443 – Pattern Recognition LECTURE 07: MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION Objectives: Class-Conditional Density The Multivariate Case General.
Ch 2. Probability Distributions (1/2) Pattern Recognition and Machine Learning, C. M. Bishop, Summarized by Yung-Kyun Noh and Joo-kyung Kim Biointelligence.
1 Sample Geometry and Random Sampling Shyh-Kang Jeng Department of Electrical Engineering/ Graduate Institute of Communication/ Graduate Institute of Networking.
STA347 - week 31 Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5’s in the 6 rolls. Let X = number of.
Distributions, Iteration, Simulation Why R will rock your world (if it hasn’t already)
Simulations and programming in R. Why to simulate and program in R at all? ADVANTAGES –All R facilities can be used in the simulations Random number generators.
Stats Probability Theory Summary. The sample Space, S The sample space, S, for a random phenomena is the set of all possible outcomes.
EE 5345 Multiple Random Variables
Exam 2: Rules Section 2.1 Bring a cheat sheet. One page 2 sides. Bring a calculator. Bring your book to use the tables in the back.
Linear Algebra Diyako Ghaderyan 1 Contents:  Linear Equations in Linear Algebra  Matrix Algebra  Determinants  Vector Spaces  Eigenvalues.
IE 300, Fall 2012 Richard Sowers IESE. 8/30/2012 Goals: Rules of Probability Counting Equally likely Some examples.
Bayesian Prior and Posterior Study Guide for ES205 Yu-Chi Ho Jonathan T. Lee Nov. 24, 2000.
Chapter 5a:Functions of Random Variables Yang Zhenlin.
The generalization of Bayes for continuous densities is that we have some density f(y|  ) where y and  are vectors of data and parameters with  being.
Brief Review Probability and Statistics. Probability distributions Continuous distributions.
Linear Algebra Diyako Ghaderyan 1 Contents:  Linear Equations in Linear Algebra  Matrix Algebra  Determinants  Vector Spaces  Eigenvalues.
TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE
STA347 - week 91 Random Vectors and Matrices A random vector is a vector whose elements are random variables. The collective behavior of a p x 1 random.
The Unscented Particle Filter 2000/09/29 이 시은. Introduction Filtering –estimate the states(parameters or hidden variable) as a set of observations becomes.
Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability Primer Bayesian Brain Probabilistic Approaches to Neural Coding 1.1 A Probability.
Random Variables By: 1.
Part 3: Estimation of Parameters. Estimation of Parameters Most of the time, we have random samples but not the densities given. If the parametric form.
MECH 373 Instrumentation and Measurements
LECTURE 09: BAYESIAN ESTIMATION (Cont.)
STOCHASTIC HYDROLOGY Stochastic Simulation (I) Univariate simulation
Random Variables and their Properties
Maximum Likelihood Find the parameters of a model that best fit the data… Forms the foundation of Bayesian inference Slide 1.
Chapter 3 : Random Variables
Presentation transcript:

Introduction Paul J. Hurtado Mathematical Biosciences Institute (MBI), The Ohio State University 19 May 2014 (Monday a.m.)

Workshop Overview Why do we do statistics? Estimation vs Uncertainty Quantification ODEs vs “Classical” Models Other useful topics… I.Fundamental Concepts: Review/Overview Linear models and e x Parameter Space & Bifurcations Probability & Statistics Optimization Visualization II.Computer Lab Resources: (URL) Scripts vs. console (R vs Matlab) Simulating ODE Solutions Graphics/Plotting Random numbers Manipulating Objects … III.Summary

Why do statistics? Scientific vs. Mathematical Inference Estimation & Uncertainty Quantification Statistics with dynamic models? Challenges of statistics with ODEs?

Additional Topics? Markov Chain Monte Carlo (MCMC) Bayesian Methods Filtering (Kalman, Particle, etc) Functional Data Analysis SDEs, PDEs, SPDEs… Decision Trees, Neural Networks, etc. etc!

Quick Review Linear Models Probability Parameter Space Bifurcations Visualization

Linear Equations

X Y

X Y

X Y Y = m X + b

X Y

X Y

X Y Y = m X + b + ε

X Y Y = m X + b

Why linear algebra? Curves: intuition based on lines. Models are rarely 1-dimensional! y 1 = ax 1 – bx 3 y = m x vs y 2 = – cx 1 – dx 2 + bx 3 y 3 = – bx 3 + ax 1 X Y

Matrices & Vectors… … useful notation. For example, y = Ax vs … essential tools for math/computing. or

Computers :: Matrix

Matrix Applications Two common ways matrices are used: 1.Storage variables: data, etc. * Easier, faster computations! 2. Maps/Transformations

Matrix transformations Pick a random* matrix A. It can be written: A = QDQ -1 where D=diag( λ 1, …, λ n ) are eigenvalues, & the columns of Q are their eigenvectors. y = A x Q: How does A convert x to y?

Matrix transformations Example: y 1 ’ = A 11 y1+A 12 y 2 +…+A 1n y n y 2 ’ = A 21 y1+A 22 y 2 +…+A 2n y n... y n ’ = A n1 y1+A n2 y 2 +…+A nn y n

Matrix transformations Example: y 1 ’ A 11 A 12 … A 1n y n y 2 ’ A 21 A 22 … A 2n y n... y n ’ A n1 A n2 … A nn y n = A

Matrix transformations Example: y 1 ’ λ 1 0 … 0 y n y 2 ’ 0 λ 2 … 0 y n... y n ’ 0 0 … λ n y n = QQ -1 A = Q D Q -1

Matrix transformations Example: y 1 ’ λ 1 0 … 0 y n y 2 ’ 0 λ 2 … 0 y n... y n ’ 0 0 … λ n y n = Q -1 QQ -1

Matrix transformations Example: Y 1 ’ λ 1 0 … 0 Y 1 Y 2 ’ 0 λ 2 … 0 Y 2... Y n ’ 0 0 … λ n Y n =

Matrix transformations Example: Y 1 ’ = λ 1 Y 1 Y 2 ’ = λ 2 Y 2... Y n ’ = λ n Y n

Matrix transformations Example: Y 1 (t) = Y 1 (0)exp(λ 1 t) Y 2 (t) = Y 2 (0)exp(λ 2 t)... Y n (t) = Y n (0)exp(λ n t)

Matrix transformations Example: Y 1 (t) Y 1 (0)exp(λ 1 t) Y 2 (t) Y 2 (0)exp(λ 2 t)... Y n (t) Y n (0)exp(λ n t) =

Matrix transformations Example: y 1 (t) Y 1 (0)exp(λ 1 t) y 2 (t) Y 2 (0)exp(λ 2 t)... y n (t) Y n (0)exp(λ n t) = Q

Matrix transformations Example: y 1 (t) Y 1 (0)exp(λ 1 t) y 2 (t) Y 2 (0)exp(λ 2 t)... y n (t) Y n (0)exp(λ n t) = q 1 … q n

Matrix transformations Example: y 1 (t) y 2 (t) … y n (t) = Y 1 (0)exp(λ 1 t) q 1 + … + Y n (0)exp(λ n t) q n

Matrix transformations Summary #1: Eigenpairs tells us about the geometry of matrix transformations

Matrices & Models Linear Model in matrix form: Y i = β 0 + β 1 X i + ε i where ε i ~ N(0,σ 2 )

Matrices & Models Linear Model in matrix form: Y 1 = β 0 + β 1 X 1 + ε 1 Y 2 = β 0 + β 1 X 2 + ε 2 … Y n = β 0 + β 1 X n + ε n

Matrices & Models Linear Model in matrix form: Y 1 β 0 + β 1 X 1 ε 1 Y 2 β 0 + β 1 X 2 ε 2 … Y n β 0 + β 1 X n ε n = +

Matrices & Models Linear Model in matrix form: Y 1 1 X 1 ε 1 Y 2 1 X 2 ε 2 … Y n 1 X n ε n = + β0β0 β1β1 Unknown!

Matrices & Models Linear Model in matrix form: Goal: Minimize ε’ε = (Y-Xβ)’(Y-Xβ). This is the same as solving (X’Y) = (X’X)β. Y = X β + ε Unknown!

Summary Matrices are pervasive in scientific computing, statistics. - Computing with vectors/matrices is faster, simpler than iteration/loops. - Intuition improves use, interpretation. Linear algebra is a cornerstone of stats!

X Y Y = m X + b + ε

Probability Basics

Distributions Density CDF Continuous Random Variables: Ex: Normal, Gamma, etc.

Distributions Mass CDF Discrete Random Variables: Ex: Poisson, Binomial, etc.

Distributions Mass+Density CDF 20% 80% 20% Mixed Distributions: Zero-inflated Normal, etc.

Sampling CDFs Let r~Unif(0,1), CDF F(x) with inverse F -1. Then F -1 (r) ~ F(x). Ex:.67    5.9

Distributions in R R has many built-in densities and CDFs! Density CDF Quantile Sample dnorm pnorm qnorm rnorm dpois ppois qpois rpois … beta, binomial, Cauchy, χ 2, exponential, F, gamma, geometric, hypergeometric, log- normal, multinomial, negative binomial, Student's t, uniform distribution, Weibull, etc.

Multivariate If Yi all independent, identically distributed Y i ~ f(y|θ) then their joint distribution is the product Y = (Y 1, …,Y n ) ~ f(y i |θ).

Liklihood The likelihood of data X=(X 1,…,X n ) under parameter θ is given by Lik(θ|X) = f(X i |θ). The log-likelihood of data X=(X 1,…,X n ) under parameter θ is given by LL(θ|X) = log(f(X i |θ)).

Parameter Space Bifurcations

Consumption Rate (a) Saturation Parameter (k)

Optimization

Visualization

GDP R 2 = … p = …

Questions?