A DDING S TRUCTURE TO T OP -K: F ORM I TEMS TO E XPANSIONS Date : 2012.5.21 Source : CIKM’ 11 Speaker : I-Chih Chiu Advisor : Dr. Jia-Ling Koh 1.

Slides:



Advertisements
Similar presentations
Schema Matching and Query Rewriting in Ontology-based Data Integration Zdeňka Linková ICS AS CR Advisor: Július Štuller.
Advertisements

Processing XML Keyword Search by Constructing Effective Structured Queries Jianxin Li, Chengfei Liu, Rui Zhou and Bo Ning Swinburne University of Technology,
Collaborative Filtering in Social Tagging System on Joint Item-Tag Recommendations Date : 2011/11/7 Source : Jing Peng et. al (CIKM’10) Speaker : Chiu.
Diversity Maximization Under Matroid Constraints Date : 2013/11/06 Source : KDD’13 Authors : Zeinab Abbassi, Vahab S. Mirrokni, Mayur Thakur Advisor :
Fast Algorithms For Hierarchical Range Histogram Constructions
Pete Bohman Adam Kunk.  Introduction  Related Work  System Overview  Indexing Scheme  Ranking  Evaluation  Conclusion.
DOMAIN DEPENDENT QUERY REFORMULATION FOR WEB SEARCH Date : 2013/06/17 Author : Van Dang, Giridhar Kumaran, Adam Troy Source : CIKM’12 Advisor : Dr. Jia-Ling.
Bring Order to Your Photos: Event-Driven Classification of Flickr Images Based on Social Knowledge Date: 2011/11/21 Source: Claudiu S. Firan (CIKM’10)
Searchable Web sites Recommendation Date : 2012/2/20 Source : WSDM’11 Speaker : I- Chih Chiu Advisor : Dr. Koh Jia-ling 1.
GENERATING AUTOMATIC SEMANTIC ANNOTATIONS FOR RESEARCH DATASETS AYUSH SINGHAL AND JAIDEEP SRIVASTAVA CS DEPT., UNIVERSITY OF MINNESOTA, MN, USA.
Ao-Jan Su † Y. Charlie Hu ‡ Aleksandar Kuzmanovic † Cheng-Kok Koh ‡ † Northwestern University ‡ Purdue University How to Improve Your Google Ranking: Myths.
Mining Query Subtopics from Search Log Data Date : 2012/12/06 Resource : SIGIR’12 Advisor : Dr. Jia-Ling Koh Speaker : I-Chih Chiu.
Explorations in Tag Suggestion and Query Expansion Jian Wang and Brian D. Davison Lehigh University, USA SSM 2008 (Workshop on Search in Social Media)
Retrieving Documents with Geographic References Using a Spatial Index Structure Based on Ontologies Database Laboratory University of A Coruña A Coruña,
Mobile Web Search Personalization Kapil Goenka. Outline Introduction & Background Methodology Evaluation Future Work Conclusion.
1 Ranked Queries over sources with Boolean Query Interfaces without Ranking Support Vagelis Hristidis, Florida International University Yuheng Hu, Arizona.
I DENTIFYING T OURISTS FROM P UBLIC T RANSPORT C OMMUTERS Speaker: Jim-An Tsai Advisor: Jia-ling Koh Author: Mingqiang Xue #, Huayu Wu #, Wei Chen #, Wee.
PRESENTED BY- HARSH SINGH A Random Walk Approach to Sampling Hidden Databases By Arjun Dasgupta, Dr. Gautam Das and Heikki Mannila.
Tag Clouds Revisited Date : 2011/12/12 Source : CIKM’11 Speaker : I- Chih Chiu Advisor : Dr. Koh. Jia-ling 1.
Leveraging Conceptual Lexicon : Query Disambiguation using Proximity Information for Patent Retrieval Date : 2013/10/30 Author : Parvaz Mahdabi, Shima.
Mining High Utility Itemsets without Candidate Generation Date: 2013/05/13 Author: Mengchi Liu, Junfeng Qu Source: CIKM "12 Advisor: Jia-ling Koh Speaker:
1 A Bayesian Method for Guessing the Extreme Values in a Data Set Mingxi Wu, Chris Jermaine University of Florida September 2007.
Beyond Co-occurrence: Discovering and Visualizing Tag Relationships from Geo-spatial and Temporal Similarities Date : 2012/8/6 Resource : WSDM’12 Advisor.
A Personalized Recommender System Based on Users’ Information In Folksonomies Date: 2013/12/18 Author: Mohamed Nader Jelassi, Sadok Ben Yahia, Engelbert.
CIKM’09 Date:2010/8/24 Advisor: Dr. Koh, Jia-Ling Speaker: Lin, Yi-Jhen 1.
Exploring Online Social Activities for Adaptive Search Personalization CIKM’10 Advisor : Jia Ling, Koh Speaker : SHENG HONG, CHUNG.
1 Efficient Search Ranking in Social Network ACM CIKM2007 Monique V. Vieira, Bruno M. Fonseca, Rodrigo Damazio, Paulo B. Golgher, Davi de Castro Reis,
Querying Structured Text in an XML Database By Xuemei Luo.
MINING FREQUENT ITEMSETS IN A STREAM TOON CALDERS, NELE DEXTERS, BART GOETHALS ICDM2007 Date: 5 June 2008 Speaker: Li, Huei-Jyun Advisor: Dr. Koh, Jia-Ling.
Understanding and Predicting Personal Navigation Date : 2012/4/16 Source : WSDM 11 Speaker : Chiu, I- Chih Advisor : Dr. Koh Jia-ling 1.
Date: 2013/8/27 Author: Shinya Tanaka, Adam Jatowt, Makoto P. Kato, Katsumi Tanaka Source: WSDM’13 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang Estimating.
ON THE SELECTION OF TAGS FOR TAG CLOUDS (WSDM11) Advisor: Dr. Koh. Jia-Ling Speaker: Chiang, Guang-ting Date:2011/06/20 1.
FINDING RELEVANT INFORMATION OF CERTAIN TYPES FROM ENTERPRISE DATA Date: 2012/04/30 Source: Xitong Liu (CIKM’11) Speaker: Er-gang Liu Advisor: Dr. Jia-ling.
Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.
Date : 2012/10/25 Author : Yosi Mass, Yehoshua Sagiv Source : WSDM’12 Speaker : Er-Gang Liu Advisor : Dr. Jia-ling Koh 1.
Enhancing Cluster Labeling Using Wikipedia David Carmel, Haggai Roitman, Naama Zwerdling IBM Research Lab (SIGIR’09) Date: 11/09/2009 Speaker: Cho, Chin.
TagLearner: A P2P Classifier Learning System from Collaboratively Tagged Text Documents Haimonti Dutta 1, Xianshu Zhu 2, Tushar Muhale 2, Hillol Kargupta.
Facilitating Document Annotation using Content and Querying Value.
How do I find works in the Repository?. University of Texas Libraries UT DR Digital Repository Search in the Repository Keyword search from the Repository.
Templated Search over Relational Databases Date: 2015/01/15 Author: Anastasios Zouzias, Michail Vlachos, Vagelis Hristidis Source: ACM CIKM’14 Advisor:
1 Efficient Algorithms for Incremental Update of Frequent Sequences Minghua ZHANG Dec. 7, 2001.
Date : 2013/03/18 Author : Jeffrey Pound, Alexander K. Hudek, Ihab F. Ilyas, Grant Weddell Source : CIKM’12 Speaker : Er-Gang Liu Advisor : Prof. Jia-Ling.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Manoranjan.
Date: 2012/07/02 Source: Marina Drosou, Evaggelia Pitoura (CIKM’11) Speaker: Er-Gang Liu Advisor: Dr. Jia-ling Koh 1.
A Classification-based Approach to Question Answering in Discussion Boards Liangjie Hong, Brian D. Davison Lehigh University (SIGIR ’ 09) Speaker: Cho,
ITrails: Pay-as-you-go Information Integration in Dataspaces Presented By Marcos Vaz Salles, Jens Dittrich, Shant Karakashian, Olivier Girard, Lukas Blunschi.
Multidimensional analysis model for a document warehouse that includes textual measures KIM JEONG RAE UOS.DML
Date: 2012/08/21 Source: Zhong Zeng, Zhifeng Bao, Tok Wang Ling, Mong Li Lee (KEYS’12) Speaker: Er-Gang Liu Advisor: Dr. Jia-ling Koh 1.
Date: 2013/6/10 Author: Shiwen Cheng, Arash Termehchy, Vagelis Hristidis Source: CIKM’12 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang Predicting the Effectiveness.
1 Adaptive Subjective Triggers for Opinionated Document Retrieval (WSDM 09’) Kazuhiro Seki, Kuniaki Uehara Date: 11/02/09 Speaker: Hsu, Yu-Wen Advisor:
Dynamic Faceted Search for Discovery- driven Analysis Debabrata Sash, Jun Rao, Nimrod Megiddo, Anastasia Ailamaki, Guy Lohman CIKM’08 Speaker: Li, Huei-Jyun.
Date: 2013/4/1 Author: Jaime I. Lopez-Veyna, Victor J. Sosa-Sosa, Ivan Lopez-Arevalo Source: KEYS’12 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang KESOSD.
Topical Clustering of Search Results Date : 2012/11/8 Resource : WSDM’12 Advisor : Dr. Jia-Ling Koh Speaker : Wei Chang 1.
Extracting Query Facets From Search Results Date : 2013/08/20 Source : SIGIR’13 Authors : Weize Kong and James Allan Advisor : Dr.Jia-ling, Koh Speaker.
S CALABLE S KYLINE C OMPUTATION U SING O BJECT - BASED S PACE P ARTITIONING Shiming Zhang Nikos Mamoulis David W. Cheung sigmod
Pete Bohman Adam Kunk.  Introduction  Related Work  System Overview  Indexing Scheme  Ranking  Evaluation  Conclusion.
Using category-Based Adherence to Cluster Market-Basket Data Author : Ching-Huang Yun, Kun-Ta Chuang, Ming-Syan Chen Graduate : Chien-Ming Hsiao.
Bringing Order to the Web : Automatically Categorizing Search Results Advisor : Dr. Hsu Graduate : Keng-Wei Chang Author : Hao Chen Susan Dumais.
Finding similar items by leveraging social tag clouds Speaker: Po-Hsien Shih Advisor: Jia-Ling Koh Source: SAC 2012’ Date: October 4, 2012.
CiteData: A New Multi-Faceted Dataset for Evaluating Personalized Search Performance CIKM’10 Advisor : Jia-Ling, Koh Speaker : Po-Hsien, Shih.
CS791 - Technologies of Google Spring A Web­based Kernel Function for Measuring the Similarity of Short Text Snippets By Mehran Sahami, Timothy.
1 Link Privacy in Social Networks Aleksandra Korolova, Rajeev Motwani, Shubha U. Nabar CIKM’08 Advisor: Dr. Koh, JiaLing Speaker: Li, HueiJyun Date: 2009/3/30.
ClusCite:Effective Citation Recommendation by Information Network-Based Clustering Date: 2014/10/16 Author: Xiang Ren, Jialu Liu,Xiao Yu, Urvashi Khandelwal,
Efficient Similarity Search : Arbitrary Similarity Measures, Arbitrary Composition Date: 2011/10/31 Source: Dustin Lange et. al (CIKM’11) Speaker:Chiang,guang-ting.
خشنه اتره اهورهه مزدا شيوۀ ارائه مقاله 17/10/1388.
Learning Literature Search Models from Citation Behavior
Intent-Aware Semantic Query Annotation
Date : 2013/1/10 Author : Lanbo Zhang, Yi Zhang, Yunfei Chen
Tantan Liu, Fan Wang, Gagan Agrawal The Ohio State University
WSExpress: A QoS-Aware Search Engine for Web Services
Presentation transcript:

A DDING S TRUCTURE TO T OP -K: F ORM I TEMS TO E XPANSIONS Date : Source : CIKM’ 11 Speaker : I-Chih Chiu Advisor : Dr. Jia-Ling Koh 1

I NDEX Introduction Problem Definition Basic Algorithm Semantic Optimization Experiments Conclusion 2

I NTRODUCTION Keyword based search interfaces are extremely popular. 3

I NTRODUCTION Google search Query → What’s the weather today? Results include ‘what’, ’weather’, ’today’. Lack of semantic. Del.icio.us Search results → Using a faceted interface. Expansions → A fixed set of tags. 4

I NTRODUCTION Motivated by these drawbacks of current search result interfaces, considering a search scenario in which each item is annotated with a set of keywords. Don’t need to assume the existence of pre-defined categorical hierarchy Want to automatically group query result items into different expansions of the query corresponding to subsets of keywords. 5

I NDEX Introduction Problem Definition Basic Algorithm Semantic Optimization Experiments Conclusion 6

P ROBLEM D EFINITION 7 t i.a j : normalized to [0,1] Author(0.3)Click(0.6) t t t t u(t i ) 0.6* *0.8= * *0.2= * *0.3= * *0.4=0.51

P ROBLEM D EFINITION Group items into different expansions of Q and return high quality expansions. A subset of keywords e ⊆ K − Q. (K : all keywords) Subset-of relationship for K-Q={k 1,k 2,k 3,k 4 } 8

D ETERMINING I MPORTANCE OF A N E XPANSION 9 S k1 S k1,k2 S k2,k3 t 1 (k 1 )0.4XX t 2 (k 1,k 2 )0.60.5X t 3 (k 3 )XX0.6 g(S e )

I NDEX Introduction Problem Definition Basic Algorithm Semantic Optimization Experiments Conclusion 10

N AÏVE A LGORITHM TopExp-Naïve algorithm 11 Access items in the non- increasing order of their attribute value For each matching item accessed, enumerate all possible expansions and update their lower bound and upper bound utility value; Round-robin

I MPROVED A LGORITHM 12 LKLK L

I MPROVED A LGORITHM 13

I MPROVED A LGORITHM TopExp-Lazy algorithm 14 Access items in the non- increasing order of their attribute value

I MPROVED A LGORITHM To count how many expansions correspond to the same set of items. Use the classical inclusion-exclusion principle. 2 |e| − count − 1 count += 2 |e’| -1 E.g. e = {k 1,k 2,k 3 } → 8 (2 |e| ) e’ = {k 1,k 2 },{k 3 } → 4 (count) 8 – 4 – 1 = 3  ({k 1, k 2, k 3 }, {k 1, k 3 } and {k 2, k 3 }). 15

I NDEX Introduction Problem Definition Basic Algorithm Semantic Optimization Experiments Conclusion 16

W EIGHTING E XPANSIONS 17

P ATH E XCLUSION BASED A LGORITHM 18

P ATH E XCLUSION BASED A LGORITHM 19 Assume weights are equal 1. H1H1 H2H2 G

P ATH E XCLUSION BASED A LGORITHM Top-PEkExp algorithm 20 Generate necessary expansions using TopExp-Lazy R G ←GreedyMWIS( L ); Etopk ←k expansions in L which have the largest upper bound utilities;

I NDEX Introduction Problem Definition Basic Algorithm Semantic Optimization Experiments Conclusion 21

E XPERIMENTS Synthetic datasets Generated 5 synthetic datasets with size from 8000 to Efficiency Scalability Memory saving Real datasets The ACM Digital Library. Demonstrate the quality of the expansions returned. 22

E XPERIMENTS Fixed N=10 and k=10 23

E XPERIMENTS Fixed number of items=10000, N = 10 24

E XPERIMENTS Fixed number of items=10000, k = 10 25

E XPERIMENTS Queries : “xml” “histogram” “privacy” Attributes : The average author publication number The citation count. Keywords : The title Keywords list Abstract 26

27

C ONCLUSION They studied the problem of how to better present search/query results to users. Proposed various efficient algorithms which can calculate top-k expansions. Not only demonstrated the performance of the proposed algorithms, also validated the quality of the expansions returned by doing a study on a real data set. 28