Physics 1202: Lecture 22 Today’s Agenda Announcements: –Lectures posted on: www.phys.uconn.edu/~rcote/ www.phys.uconn.edu/~rcote/ –HW assignments, etc.

Slides:



Advertisements
Similar presentations
Option G2: Optical Instruments
Advertisements

Consider Refraction at Spherical Surfaces:
Cutnell/Johnson Physics 7th edition
Physics 1C Lecture 26B Quiz Grades for Quiz 2 are now online. Avg is again 67% Same as for Quiz 1.
Chapter 31: Images and Optical Instruments
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Flat Mirrors Consider an object placed in front of a flat mirror
Physics 1161 – Lecture 23 Lenses
Flat Lens (Window) n1n1 n2n2 Incident ray is displaced, but its direction is not changed. tt 11 11 If  1 is not large, and if t is small, the.
→ ℎ
Chapter 31 Images.
Chapter 26 Geometrical Optics. Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror.
How well do you know Lenses? Lenses work because of A. refraction B. reflection c. Both.
Physics Light: Geometric Optics 23.1 The Ray Model of Light 23.2 Reflection - Plane Mirror 23.3 Spherical Mirrors 23.5 Refraction - Snell’s law.
Chapter 34 Geometric Optics. What is Geometric Optics It is the study of light as particles. Geometric optics treats light as particles (or rays) that.
Chapter 23 Mirrors and Lenses.
and Optical Instruments
The Refraction of Light The speed of light is different in different materials. We define the index of refraction, n, of a material to be the ratio of.
Lecture 25-1 Locating Images Real images form on the side of a mirror where the objects are, and virtual images form on the opposite side. only using the.
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Light: Geometric Optics
Chapter 36 Image Formation. Summary: mirrors Sign conventions: + on the left - on the right Convex and plane mirrors: only virtual images (for real objects)
Chapter 25. Mirrors and the Reflection of Light Our everyday experience that light travels in straight lines is the basis of the ray model of light. Ray.
Chapter 11 Review Mirrors & Lenses. What is an angle of incidence? 2 The angle between an incident ray and the normal of an optical device. Category:
Your final homework (#12) is due Friday 25th April. This homework can be collected from my office area in SER 220 from Monday 28 th onwards (for exam revision).
Physics 1502: Lecture 30 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Friday Optics –Mirrors –Lenses –Eye.
Physics 1402: Lecture 31 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Wednesday (after midterm 2) Optics –Lenses –Eye.
R   h h’h’ s-Rs-R R-s’R-s’ s s’s’ Today... Overview : Nothing new here! –objects and images –convex mirrors Concave Spherical Mirrors –The Mirror Eqn,
Copyright © 2009 Pearson Education, Inc. Lecture 2 – Geometrical Optics b) Thin Lenses.
Thin Lenses 91 is the highest grade while 75 is the lowest grade. 91 is the highest grade while 75 is the lowest grade. Best Project ( Website and Reflection.
Chapter 23 Mirrors and Lenses.
Physics 1502: Lecture 29 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Friday Optics –Index of Refraction.
 Get out notes and practice from yesterday  Pick up ruler and finish practice from yesterday.
Lecture 14 Images Chapter 34. Law of Reflection Dispersion Snell’s Law Brewsters Angle Preliminary topics before mirrors and lenses.
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Lecture 14 Images Chapter 34 Geometrical Optics Fermats Principle -Law of reflection -Law of Refraction Plane Mirrors and Spherical Mirrors Spherical refracting.
Lecture 14 Images Chp. 35 Opening Demo Topics –Plane mirror, Two parallel mirrors, Two plane mirrors at right angles –Spherical mirror/Plane mirror comparison.
Index of Refraction Index of refraction of a medium is defined in terms of the speed of light in this medium In general, the speed of light in any material.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker.
Image Formation. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction. When we.
Physics 1C Lecture 26A.
Geometric Optics September 14, Areas of Optics Geometric Optics Light as a ray. Physical Optics Light as a wave. Quantum Optics Light as a particle.
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Dr. Andrew Tomasch 2405 Randall Lab
Chapter 23 Mirrors and Lenses.
Fundamental Physics II PETROVIETNAM UNIVERSITY FUNDAMENTAL SCIENCES DEPARTMENT Vungtau, 2013 Pham Hong Quang
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Chapter 34 Lecture Eight: Images: II. Image Formed by a Thin Lens A thin lens is one whose thickness is small compared to the radii of curvature For a.
Last Word on Chapter 22 Geometric Optics Images in a Plane Mirror.
Chapter 35 MirrorsLenses Images. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction.
 When light strikes the surface of an object  Some light is reflected  The rest is absorbed (and transferred into thermal energy)  Shiny objects,
Chapter 36 Image Formation.
AP Physics IV.C Geometric Optics. Wave Fronts and Rays.
Textbook sections 26-3 – 26-5, 26-8 Physics 1161: Lecture 17 Reflection & Refraction.
Dispersion The spreading of light into its color components is called dispersion. When light enters a prism, the refracted ray is bent towards the normal,
Physics 1202: Lecture 23 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Physics 1202: Lecture 21 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Mirrors.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
Mirrors. Types of mirror There are two types of mirror Plane (flat) Curved Concave (curves in) Convex (curves out)
Geometrical Optics.
Speed of light In a vacuum, light travels at a speed of 3 x 10 8 m/s. In any other medium, such as air, water, glass, etc., light travels slower. MaterialSpeed.
Mirrors and Lenses How do eyeglasses correct your vision? When you look in a mirror, where is the face you see? In which ways is a cell phone camera similar.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Lecture 25-1 Locating Images Real images form on the side of a mirror where the objects are, and virtual images form on the opposite side. only using the.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
Physics 1202: Lecture 18 Today’s Agenda
17.2 Mirrors, Lenses, and Images
LENSES s s’ h’ h f.
Presentation transcript:

Physics 1202: Lecture 22 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc. Homework #7:Homework #7: –Due next Friday

Prisms 11 22 33 44 Overall Deflection At both deflections the amount of downward deflection depends on n (and the prism apex angle,  ). Each color has a different speed or n. Different colors will bend different amounts ! 

o i f h’h’ h R   h h’h’ o-R R-i o i &

Concave Spherical Mirrors

The Mirror Equation We will now transform the geometric drawings into algebraic equations: R     object  h image o i from triangles, eliminating , Now we employ the small angle approximations: Plugging these back into the above equation relating the angles, we get: Defining the focal length f = R/2, This eqn is known as the mirror eqn. Note that there is no mention of  in this equation. Therefore, this eqn works for all , ie we have an image!

Magnification We have derived the mirror eqn which determines the image distance in terms of the object distance and the focal length: What about the size of the image? How is h’ related to h?? From similar triangles: Now, we can introduce a sign convention. We can indicate that this image is inverted if we define its magnification M as the negative number given by:   R h o h’h’ i

More Sign Conventions Consider an object distance s which is less than the focal length:   h’h’ i Ray Trace: Ray through the center of the sphere (light blue) is reflected straight back. R h o f We call this a virtual image, meaning that no light from the object passes through the image point. Proof left to student: This situation is described by the same mirror equations as long as we take the convention that images behind the mirror have negative image distances s’. ie: In this case, i 0, indicating that the image is virtual (i 0). Ray parallel to axis (red) passes through focal point f. These rays diverge! ie these rays look they are coming from a point behind the mirror.

Concave-Planar-Convex What happens as we change the curvature of the mirror? –Plane mirror: »R =  IMAGE: virtual upright (non-inverted) h’h’  h  o i f IMAGE: virtual upright (non-inverted) –Convex mirror: »R < 0

Lecture 22, ACT 1 In order for a real object to create a real, inverted enlarged image, a) we must use a concave mirror. b) we must use a convex mirror. c) neither a concave nor a convex mirror can produce this image.

Mirror – Lens Definitions Some important terminology we introduced last class, –o = distance from object to mirror (or lens) – i = distance from mirror to image o positive, i positive if on same side of mirror as o. –R = radius of curvature of spherical mirror –f = focal length, = R/2 for spherical mirrors. –Concave, Convex, and Spherical mirrors. –M = magnification, (size of image) / (size of object) negative means inverted image R     object  h image o i

Lenses A lens is a piece of transparent material shaped such that parallel light rays are refracted towards a point, a focus: –Convergent Lens »light moving from air into glass will move toward the normal »light moving from glass back into air will move away from the normal »real focus –Divergent Lens »light moving from air into glass will move toward the normal »light moving from glass back into air will move away from the normal »virtual focus

1) Rays parallel to principal axis pass through focal point. 2) Rays through center of lens are not refracted. 3) Rays through F emerge parallel to principal axis. Assumptions: monochromatic light incident on a thin lens. rays are all “ near ” the principal axis. F F Object P.A. Image is: real, inverted and enlarged (in this case). Image Converging Lens Principal Rays

The Lens Equation We now derive the lens equation which determines the image distance in terms of the object distance and the focal length. –Convergent Lens: i f h’h’ o h Ray Trace: Ray through the center of the lens (light blue) passes through undeflected. two sets of similar triangles: eliminating h’/h: same as mirror eqn if we define i > 0 f > 0 magnification: also same as mirror eqn!! M < 0 for inverted image. Ray parallel to axis (white) passes through focal point f.

Summary We have derived, in the paraxial (and thin lens) approximation, the same equations for mirrors and lenses: when the following sign conventions are used: Variable f > 0 f < 0 o > 0 o < 0 i > 0 i < 0 Mirror concave convex real (front) virtual (back) real (front) virtual (back) Lens converging diverging real (front) virtual (back) real (back) virtual (front)

This could be used as a projector. Small slide on big screen This is a magnifying glass This could be used in a camera. Big object on small film Upright Enlarged Virtual Inverted Enlarged Real Inverted Reduced Real 3 Cases for Converging Lenses ImageObject Inside F Object Image Past 2F Image Object Between F & 2F

1) Rays parallel to principal axis pass through focal point. 2) Rays through center of lens are not refracted. 3) Rays toward F emerge parallel to principal axis. F F Object P.A. Image is virtual, upright and reduced. Image Diverging Lens Principal Rays

Lecture 22, ACT 2 A lens is used to image an object on a screen. The right half of the lens is covered. –What is the nature of the image on the screen? (a) left half of image disappears (b) right half of image disappears (c) entire image reduced in intensity object lens screen

Multiple Lenses We determine the effect of a system of lenses by considering the image of one lens to be the object for the next lens. For the first lens: o 1 = +1.5, f 1 = +1 For the second lens: o 2 = +1, f 2 = -4   f = +1 f =

Multiple Lenses Objects of the second lens can be virtual. Let’s move the second lens closer to the first lens (in fact, to its focus): For the first lens: o 1 = +1.5, f 1 = +1 For the second lens: o 2 = -2, f 2 = -4   Note the negative object distance for the 2nd lens. f = +1 f =

Multiple Lenses If the two lenses are thin, they can be touching – i.e. in the same position. We can treat as one lens. f total = ?? ? Adding, For the first lens: o=o 1, i 1 and f 1 For the second lens: o 2 = -i 1, i 2 =i, f 2 As long as,

The Lens Equation –Convergent Lens: i f h’h’ o h

The Lensmaker’s Formula So far, we have treated lenses in terms of their focal lengths. How do you make a lens with focal length f ? Start with Snell’s Law. Consider a plano-convex lens: Snell’s Law at the curved surface: The bend-angle  is just given by: The bend-angle  also defines the focal length f: The angle  can be written in terms of R, the radius of curvature of the lens : Putting these last equations together, R N air h     light ray Assuming small angles,

More generally…Lensmaker’s Formula Two curved surfaces… Two arbitrary indices of refraction R > 0 if convex when light hits it R < 0 if concave when light hits it The complete generalized case… Note: for one surface Planar,

Compound Microscope o1o1 h O I2I2 h2h2 f eye h1h1 I1I1 i1i1 Objective (f ob < 1cm) f ob L Eyepiece (f eye ~5cm) Magnification:

Refracting Telescope Star f eye I2I2 h2h2 f ob Objective (f ob ~ 250cm) Eyepiece (f eye ~5cm) i1i1 I1I1 h1h1 Angular Magnification:    

~f e I1I1 eyepiece I2I2 ~f o objective L The EYE

Retina To brain The Eye What does the eye consist of? –Sphere (balloon) of water. - An aperture that controls how much light gets through – the Iris/pupil - Bulge at the front – the cornea - A variable focus lens behind the retina – the lens - A screen that is hooked up to your brain – the retina Cornea Iris Lens