Graph Theory Chapter 10 Coloring Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)

Slides:



Advertisements
Similar presentations
Colorings of graphs and Ramsey’s theorem
Advertisements

Edge-connectivity and super edge-connectivity of P 2 -path graphs Camino Balbuena, Daniela Ferrero Discrete Mathematics 269 (2003) 13 – 20.
A Better Algorithm for Finding Planar Subgraph Gruia Călinescu Cristina G. Fernandes Ulrich Finkler Howard Karloff.
Chapter 3 Determinants and Eigenvectors 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
Graph Theory Chapter 9 Planar Graphs 大葉大學 資訊工程系 黃鈴玲.
Graphs – Basic Concepts
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
: Boxes ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11003: Boxes 解題者:蔡欣燁 解題日期: 2007 年 3 月 19 日.
Graph V(G 1 )={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} E(G 1 )={(0, 2), (0, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 6), (3, 7), (4, 7), (5, 6), (5,
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
Mycielski’s Construction Mycielski’s Construction: From a simple graph G, Mycielski’s Construction produces a simple graph G’ containing G. Beginning with.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
: The Playboy Chimp ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10611: The Playboy Chimp 解題者:蔡昇宇 解題日期: 2010 年 2 月 28 日 題意:給一已排序的數列 S( 升冪.
聯合大學資工系 周念湘 BCC 數字系統. 聯合大學資工系 周念湘 2 r 進位:轉成 10 進位 r 代表「基底」  10 進位: r = 10  2 進位: r = 2 D r : 表示某個 r 進位的數 (r 不寫,表.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
: Fast and Easy Data Compressor ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10043: Fast and Easy Data Compressor 解題者:葉貫中 解題日期: 2007 年 3.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
SPSS 分析簡介 何明洲 中山醫學大學心理系. 資料在 SPSS 上之排列 Between-subject design, one factor with three levels.
資料結構實習-一 參數傳遞.
Dynamic Multi-signatures for Secure Autonomous Agents Panayiotis Kotzanikolaou Mike Burmester.
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 10 m-way 搜尋樹與B-Tree
JAVA 程式設計與資料結構 第十六章 Hash Tables. Introduction Hash Tables 結構為一個 Array ,稱之為 Bucket array 。 如果想要新增一個物件,要根據這個物件的特性 將其加入 Hash Table 內。 Bucket Array 用 A 來代替,其.
Coloring Algorithms and Networks. Coloring2 Graph coloring Vertex coloring: –Function f: V  C, such that for all {v,w}  E: f(v)  f(w) Chromatic number.
: Problem E Antimatter Ray Clearcutting ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11008: Problem E Antimatter Ray Clearcutting 解題者:林王智瑞.
函式 Function 東海大學物理系‧資訊教育 施奇廷. 函式簡介 當程式越來越大、越複雜時,程式的維護、 除錯會變得更困難,此時必須引入函式來 簡化程式或將程式分段,將程式重複的部 分改寫為函式,將程式「模組化」 這種作法有下列優點:節省程式發展的時 間、邏輯容易瞭解、程式容易除錯、可分 工合作完成程式.
: Searching for Nessy ★☆☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 11044: Searching for Nessy 解題者:王嘉偉 解題日期: 2007 年 5 月 22 日 題意: 給定 case 數量.
: Place the Guards ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11080: Place the Guards 解題者:陳盈村 解題日期: 2008 年 3 月 26 日 題意:有一個國王希望在他的城市裡佈置守衛,
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
Vertex Cut Vertex Cut: A separating set or vertex cut of a graph G is a set SV(G) such that G-S has more than one component. d f b e a g c i h.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
Discrete Mathematics Chapter 4 Induction and Recursion 大葉大學 資訊工程系 黃鈴玲 (Lingling Huang)
Discrete Mathematics Chapter 3 Mathematical Reasoning, Induction, and Recursion 感謝 大葉大學 資訊工程系 黃鈴玲老師 提供.
Graph Theory Chapter 7 Eulerian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Discrete Mathematics Chapter 7 Advanced Counting Techniques 大葉大學 資訊工程系 黃鈴玲.
Graph Theory Chapter 5 Networks 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Packing Graphs with 4-Cycles 學生 : 徐育鋒 指導教授 : 高金美教授 2013 組合新苗研討會 ( ~ ) 國立高雄師範大學.
Graph Theory Chapter 6 Matchings and Factorizations 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Mycielski’s Construction Mycielski’s Construction: From a simple graph G, Mycielski’s Construction produces a simple graph G’ containing G. Beginning with.
Discrete Mathematics Chapter 2 Basic Structures : Sets, Functions, Sequences, and Sums 大葉大學 資訊工程系 黃鈴玲 (Lingling Huang)
Chapter 3 Trees and Forests 大葉大學 資訊工程系 黃鈴玲
Chapter 5 Coloring of Graphs. 5.1 Vertex Coloring and Upper Bound Definition: A k-coloring of a graph G is a labeling f:V(G)  S, where |S|=k (or S=[k]).
Chapter 1 Fundamental Concepts Introduction to Graph Theory Douglas B. West July 11, 2002.
CSE, IIT KGP Graph Coloring. CSE, IIT KGP K-coloring A k-coloring of G is a labeling f:V(G)  {1,…,k}.A k-coloring of G is a labeling f:V(G)  {1,…,k}.
Chapter 6 Connectivity and Flow 大葉大學 資訊工程系 黃鈴玲
Discrete Mathematics Chapter 7 Relations 感謝 大葉大學 資訊工程系 黃鈴玲老師 提供.
Discrete Mathematics Section 3.7 Applications of Number Theory 大葉大學 資訊工程系 黃鈴玲.
Graph Theory and Applications
Discrete Mathematics Chapter 5 Counting 大葉大學 資訊工程系 黃鈴玲.
Graph Theory Chapter 4 Paths and Distance in Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
Discrete Mathematics Chapter-8 Graphs 感謝 大葉大學 資訊工程系 黃鈴玲老師 提供.
Introduction to Graph Theory
Graph Theory Chapter 8 Hamiltonian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
大葉大學 資訊工程系 黃鈴玲  G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications, and Algorithms, Pearson,  G. Chartrand and O. R. Oellermann,
Chromatic Coloring with a Maximum Color Class Bor-Liang Chen Kuo-Ching Huang Chih-Hung Yen* 30 July, 2009.
Chapter 7 Planar Graphs 大葉大學 資訊工程系 黃鈴玲  7.2 Planar Embeddings  7.3 Euler’s Formula and Consequences  7.4 Characterization of Planar Graphs.
Chapter 10 Independence, Dominance, and Matchings
分類 成因 結果 解決 粉刺知多少 ? D 陳建廷 2018/11/26. 剛開始 久了氧化 表面上看不見.
分類 成因 結果 解決 粉刺知多少 ? D 陳建廷 2018/11/26. 剛開始 久了氧化 表面上看不見.
Presentation transcript:

Graph Theory Chapter 10 Coloring Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)

Copyright  黃鈴玲 Ch10-2 Outline 10.1 Vertex Colorings 10.2 Chromatic Polynomials 10.3 Edge Colorings 10.4 The Four Color Problem

Copyright  黃鈴玲 Ch Vertex Colorings Focus: Partition the vertex (edge) set of an associated graph so that adjacent vertices (edges) belong to different sets of the partition.

Copyright  黃鈴玲 Ch10-4 Definition: A set S of vertices in a graph G is independent if no two vertices of S are adjacent in G. 應用 : (1) 化學藥品存放,避免交互作用。 (2) 水族館設計,會互相捕食的魚不能放同一個水族箱。 Definition: An independent set S of vertices in a graph G is called a maximal independent set if S is not a proper subset of any other independent set of vertices of G. The maximum cardinality of an independent set of vertices of G is called the independence number of G and is denoted by   (G).

Copyright  黃鈴玲 Ch10-5 Fig 10-1 A graph G with   (G) = 4,   (G) = 4,   (G) = 2. Definition: A clique in a graph G is a maximal complete subgraph. The maximum order of a clique is the clique number of G and is denoted by   (G).

Copyright  黃鈴玲 Ch10-6 Fig 10-1 A graph G with   (G) = 4,   (G) = 4,   (G) = 2. Definition: A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. A dominating set S is a minimal dominating set if no proper subset of S is also a dominating set. The domination number   (G) of G is the minimal cardinality of a dominating set of G.

Copyright  黃鈴玲 Ch10-7 Theorem 10.1: For every graph G,   (G)    (G). Proof. Let S be a maximum independent set of G.  |S| =   (G) Since S is maximum,  every vertex v  S must be adjacent to at least one vertex of S.  S is also a dominating set.    (G)  |S| =   (G)

Copyright  黃鈴玲 Ch10-8 The Independence Number Problem: For a given graph G of order p and positive integer k  p, is   (G)  k? Determining   (G),   (G), and   (G), are NP-complete problems. The Clique Number Problem: For a given graph G of order p and positive integer k  p, is   (G)  k? The Domination Number Problem: For a given graph G of order p and positive integer k  p, is   (G)  k?

Copyright  黃鈴玲 Ch10-9 不找最大的 independent set ,  改找較大的 independent set  改找最少組互斥的 independent set 使它們形成 V(G) 的 partition Definition: A coloring of a graph G is an assignment of colors (elements of some set) to the vertices of G, so that adjacent vertices are assigned distinct colors. If n colors are used, then the coloring is referred to as an n -cloloring of G. Every coloring of a graph G produces a partition of V(G) into independent sets, called color classes. If there exists an n -coloring of a graph G, then G is n - colorable.

Copyright  黃鈴玲 Ch10-10 Definition: The minimum n for which a graph G is n -colorable is called the chromatic number of G, and is denoted by  (G). A graph G with chromatic number n is also called n -chromatic. Fig  K   (G)  4  coloring  (G)  4  (G) = 4 G

Copyright  黃鈴玲 Ch10-11 The Chromatic Number Problem: For a given graph G of order p and positive integer b with 2 < b  p, is   (G)  b? It is also an NP-complete problem. (1)  (K p ) = p for every positive integer p. (2)  (C p ) = 3 if n  3 is odd.  (C p ) = 2 if n  4 is even. (3)  (K m,n ) = 2 for every pair m,n of positive integers.

Copyright  黃鈴玲 Ch10-12 Theorem 10.2: A graph is 2-colorable if and only if it is bipartite. Theorem 10.3: Let G be a connected graph with maximum degree  =  (G). Then (i)  (G)   (G)  1 + . (ii)  (G)   if and only if G is neither a complete graph nor an odd cycle. ( 此部分稱為 Brooks theorem)

Copyright  黃鈴玲 Ch10-13 Proof. (i)  (G)   (G), trivial. (i) 證明  (G)  1 +  There is a (1 +  )- coloring of G. Since each vertex has degree  . If there are 1+  colors, any vertex can be colored by a color different with all its neighbors.   (G)  1 +  (ii) 證明跳過

Copyright  黃鈴玲 Ch10-14 Example (1) K n  K 2 :  = n,  = n   = n (2) K n,n :  = 2,  = 2,  = n There are graphs for which  = . There are graphs for which  is arbitrarily large. There are also graphs for which  is large. Definition: A graph G is called F -free if G does not contain an induced subgraph isomorphic to F. Example: C n (n  4) and K m,n are triangle-free graphs.

Copyright  黃鈴玲 Ch10-15 Theorem 10.4: (Mycielski’s Theorem) For every positive integer n, there exists an n -chromatic, triangle-free graphs. Proof. (by induction on n ) (Basis) n =1: K 1 n =2: K 2 n =3: C 5 (Inductive) Assume that H is a triangle-free graph with  (H) = k, where k  3. We will show that there exists a triangle-free graph with chromatic number k +1.

Copyright  黃鈴玲 Ch10-16 Let G be a graph with V(G)= V(H) U { u 1, u 2, …, u p } U { u }. Suppose V(H) = {v 1, v 2, …, v p }. GH u u1u1 u5u5 v1v1 v5v5 E(G) = E(H) U { u i v j | v i v j  E(H), 1  i, j  p} U { u i u | 1  i  p} Fig 10-5 The Gr ö tzsch graph (  =4, triangle-free) It is clear that G is triangle-free. It remains to show that  (G)=k+1. Let c be a k -coloring of H. Let c’ be a coloring of G with c’(u i )=c(v i ),  i, c’(v i )=c(v i ),  i, and c’(u)=k+1.

Copyright  黃鈴玲 Ch10-17 It is clear that c’ is a ( k +1)-coloring of G. So  ( G )  k +1. If G has a k- coloring, say b, with colors 1, 2, …, k. Since u is adjacent to every vertex u i, b(u)  b(u i ),  i. Suppose b(u) = k, then the vertices u i are colored by 1, 2, …, k  1. Since  (H) = k, there are some vertices of H colored by k. Recolor each vertex v i having b(v i ) = k with the color b(u i ). A ( k  1)-coloring of H produced.    (G)=k+1

Copyright  黃鈴玲 Ch10-18 Algorithm 10.1 (Sequential Coloring Algorithm) [To produce a coloring of G with V(G) = { v 1, v 2, …, v p }.] 1. i  1 ( 正在 visit 的點是 v i ) 2. c  1 ( 預計著於點 v i 的顏色 ) Sort the colors adjacent with v i in nondecreasing order and call the resulting list L i If c does not appear on L i, then assign color c to v i, and go to Step 5; otherwise, continue. 4. c  c If i < p, then i  i +1, and return to Step 2; otherwise, stop.

Copyright  黃鈴玲 Ch10-19 Figure 10-6 G v1v1 v2v2 v5v5 v3v3 v6v6 v4v 但實際只需 2 色 Alg 10.1 用了 3 色 點的編號會影響著色結果 For any graph G of order p, there are p ! possible ways to label the vertices. p ! 中必有一種編號方式可使 Alg 10.1 使用剛好  (G) 色

Copyright  黃鈴玲 Ch10-20 Figure v1v1 v2v2 vnvn v3v3 u1u1 …… u2u2 u3u3 unun G: V(G) = {v 1, u 1, v 2, u 2, …, v n, u n }. E(G) = { u i v j | i  j } n n 最糟時,可能給此種 bipartite graph 著 n 色

Copyright  黃鈴玲 Ch10-21 ※ Consider graphs whose chromatic number is decreased upon the removal of any vertex. Note that  (G  v) =  (G) or  (G)  1. Definition: A graph G is critically n -chromatic, n  2, if  (G) = n and  (G  v) = n  1 for every vertex v of G. Example: (1) C n (n is odd ) is critically 3-chromatic. (2) K n is critically n -chromatic. Note. Every graph with chromatic number n  2 contains a critically n -chromatic subgraph.

Copyright  黃鈴玲 Ch10-22 Theorem 10.5 Let G be a critically n -chromatic graph ( n  2). Then  (G)  n  1. Proof. Suppose v is a vertex of degree < n  1. G is a critically n -chromatic   (G  v) = n  1. There is an ( n  1)- coloring of G  v. deg( v ) < n  1  all neighbors of v are colored by at most n  2 colors. G has an ( n  1)- coloring. 

Copyright  黃鈴玲 Ch10-23 Homework Exercise 10.1: 1, 3, 7, 10, 14

Copyright  黃鈴玲 Ch10-24 Outline 10.1 Vertex Colorings 10.2 Chromatic Polynomials 10.3 Edge Colorings 10.4 The Four Color Problem

Copyright  黃鈴玲 Ch Chromatic Polynomials Note. Two colorings of a labeled graph G are considered different if they assign different colors to the same vertex of G. Focus. 計算有多少種不同的著色方法 Definition. The chromatic polynomial f ( G, t ) of graph G is the number of different colorings of G that use t or fewer colors. Note. If t <  (G), then f ( G, t ) = 0.

Copyright  黃鈴玲 Ch10-26 Figure 10-8 K4K4 uv x w t t  1 t  2 t  3 f (K 4, t ) = t (t   1)(t   2)(t   3) v1v1 v2v2 v4v4 v3v3 t t t t K4K4 f (K p, t ) = t (t   1)  (t   p+1) f (K 4, t ) = t 4 f (K p, t ) = t p

Copyright  黃鈴玲 Ch10-27 Figure 10-9 K 1,4 u1u1 u2u2 u4u4 u3u3 t  1 f (K 1,4, t ) = t (t   1) 4 t t  1 1  f (C 4, t ) = t (t   1) (t 2   3 t  + 3) u t t  1 v1v1 v2v2 v4v4 v3v3 C4C4 If c(v 2 ) = c(v 3 ): t  (t   1)  1  (t   1) t  2 If c(v 2 )  c(v 3 ): t  2 t  (t   1)  (t   2) 2

Copyright  黃鈴玲 Ch10-28 相當於 v1v1 v2v2 v4v4 v3v3 C4C4 If c(v 2 ) = c(v 3 ): If c(v 2 )  c(v 3 ): = v1v1 v 2 = v 3 v4v4 v1v1 v2v2 v4v4 v3v3

Copyright  黃鈴玲 Ch10-29 Definition. For a graph G with nonadjacent vertices u and v, Let G:u=v be a graph with V(G:u=v) = V(G)  {v}, E(G:u=v) = { e  E(G) | e is not incident with v} U { uw | vw  E(G) }. 即將 u 及 v 變成同一點 Theorem If u and v are nonadjacent vertices in a, noncomplete graph G, then f ( G, t ) = f ( G + uv, t ) + f (G:u=v, t ) uv 著不同色 uv 著同色

Copyright  黃鈴玲 Ch10-30 Figure  f (P 4, t ) = t (t  1)(t  2)(t  3) + 3t (t  1)(t  2) + t (t  1) u v = u v + = u v + +2 = v u + 3+

Copyright  黃鈴玲 Ch10-31 Homework Exercise 10.2: 1