Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.

Slides:



Advertisements
Similar presentations
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Advertisements

www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
Www-f1.ijs.si/~bonca SNS2007 SENDAI Spectral properties of the t-J- Holstein model in the low-doping limit Spectral properties of the t-J- Holstein model.
Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
2D and time dependent DMRG
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Introduction to the Kondo Effect in Mesoscopic Systems.
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Correlations in quantum dots: How far can analytics go?
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Transport properties: conductance and thermopower
Electron coherence in the presence of magnetic impurities
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
KONDO EFFECT IN BILAYER GRAPHENE Diego Mastrogiuseppe, Sergio Ulloa & Nancy Sandler Department of Physics & Astronomy Ohio University, Athens, OH.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Application of the Cluster Embedding Method to Transport Through Anderson Impurities George Martins Carlos Busser Physics Department Oakland University.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Physics Department, Beijing Normal University
Auxiliary Field Diffusion Monte Carlo study of symmetric nuclear matter S. Gandolfi Dipartimento di Fisica and INFN, Università di Trento I Povo,
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Singlet-Triplet and Doublet-Doublet Kondo Effect
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Conductance of nano-systems with interactions coupled
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum entanglement, Kondo effect, and electronic transport in
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Conductance through coupled quantum dots
STM Differential Conductance of a Pair of Magnetic Adatoms
Presentation transcript:

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance through coupled quantum dots

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Collaborators: R. Žitko, J. Stefan Inst., Ljubljana, Slovenia A.Ramšak and T. Rejec, FMF, Physics dept., University of Ljubljana and J. Stefan Inst., Ljubljana, Slovenia

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007  Experimental motivation  Single QD: using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime  Three QD’s: Good agreement between CPMC and GS. Two regimes  t’’> G : three peaks in G( d ) due to 3 molecular levels  t’’< G : a single peak in G( d ) of width ~ U At t”<<D, two-stage Kodo effect is found with an unstable non-Fermi liquid fixed point Introduction

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Nature, 391 (1998) Science, 281 (1998)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Double- and multiple- dot structures Craig et el., Science 304, 565 (2004) Holleitner et el., Science 297, 70 (2002)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot (Anderson single impurity problem) d

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d Meir-Wingreen, PRL 68, 2512 (1992) e d +U eded d=e d +U/2 U =1 G=dI/dV| V=0

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Quantum Dot d e d +U eded d=e d +U/2 ~ gate voltage U =1 D =U>> G

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three alternative methods:  Constrained Path Monte Carlo method (CPMC), Zhang, Carlson and Gubernatis, PRL 74,3652 (1995);PRB 59, (1999).  Projection – variational metod (GS), Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Shonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, (2003).  Numerical Renormalization Group using Reduced Density Matrix (NRG), Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994); Hofstetter, PRL 85, 1508 (2000).

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 How to obtain G from GS properties:  CPMC and GS are zero- temperature methods  Ground state energy  Conditions: System is a Fermi liquid N-(noninteracting) sites, N  ∞ G 0 =2e 2 /h Rejec, Ramšak, PRB 68, (2003) ~ ~

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Fisher – Lee relation … Conductance formalisms non-equilibrium transport: T ≠ 0, V ≠ 0 U = 0 Landauer – Büttiker formula linear response regime: T ≠ 0, V ~ 0zero-temperature linear response: T = 0, V ~ 0 U ≠ 0 Meir – Wingreen formula In Fermi liquid systems Kubo formula

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Comparison: CPMC,GS,NRG CPMC, GS-variational, Hartree-Fock: NRG: Meir-Wingreen, PRL 68, 2512 (1992) U<t; Wide-band Rejec, Ramšak, PRB 68, (2003)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Comparison: CPMC,GS,NRG CPMC, GS-variational, Hartree-Fock: NRG: Meir-Wingreen, PRL 68, 2512 (1992) U>>t; Narrow-band

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Fermi-liquid E( f ) is a universal function of f Fermi-liquid E( f ) is a universal function of f Number of electrons odd Rejec, Ramšak, PRB 68, (2003)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Zero-bias conductance Rejec, Ramšak, PRB 68, (2003)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Rejec, Ramšak, PRB 68, (2003) Connection of G with charge stiffness

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 GS variational method Auxiliary Hamitonian Projection operators Variational wavefunctions: E H : the lowest eigenvalue gives the approximation to the GS of H

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 GS variational method – cont. Using Wick’s theorem

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Side-coupled Double Quantum Dot R.Z. & J.B. PRB 73, (2006)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d – Widths of conductance plateaus: Energies on isolated DQD: d1d1 d2d2

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d – Kondo temperatures: Estimating T K using Schrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d – Kondo temperatures: Estimating T K using Schrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d – Adding FM coupling E S=1 E S=0 -J ad

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff <T K :Two Kondo temperatures: T K and T K 0 Vojta et al., PRB 65, (2002); Hofstetter, Schoeller, PRL 88, (2002), Cornaglia and Grempel, PRB 71, (2005), Wiel et al., PRL 88, (2002). Two energy scales: J eff =4t d 2 /U, T K

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff <T K :Two Kondo temperatures: T K and T K 0 TKTK TK0TK0 J eff <T K Vojta et al., PRB 65, (2002); Hofstetter, Schoeller, PRL 88, (2002), Cornaglia and Grempel, PRB 71, (2005), Wiel et al., PRL 88, (2002). Two energy scales: J eff =4t d 2 /U, T K

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff >T K J eff w

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff ~T K TKTK w TK0TK0

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff <T K TKTK w TK0TK0

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Small t d – Two-stage Kondo effect J eff <T K ~T TKTK w Experimental evidence Wiel et al., PRL 88, (2002).

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Large t d – Adding FM coupling Two-stage Kondo effect? Voja et al., PRB 65, (2002), Hofstetter, Schoeller, PRL 88, (2002),

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three coupled quantum dots Zitko, Bonca, Rejec, Ramsak, PRB 73, (2006)  Using CPMC: N CPMC [100,180]  Using GS – variational: N GS [1000,2000]  Using NRG technique: MO AFM TSK

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three coupled QDs 12 3 Oguri, Nisikawa,Hewson Half-filled case!

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three coupled QDs 12 3 Oguri, Nisikawa,Hewson, cond-mat/ Half-filled case!

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three QDs Non-Fermi-Liquid: Zitko & Bonca to appear in PRL T K (1) T K (2) TDTD T K (1) T K (2) MO AFM TSK NFL MO AFM ZOOM Cv~T lnT, c s ~lnT, S(T  0)=(1/2) ln 2 SU(2) spin x SU(2) izospin

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three QDs Non-Fermi-Liquid: C v ~T lnT, c s ~ln T Zitko & Bonca to appear in PRL T K (1) T K (2) TDTD T K (1) T K (2) MO AFM TSK NFL MO AFM ZOOM

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three coupled QDs Non-Fermi-Liquid MO AFM TSK Affletck et al. PRB 45, 7918 (1992)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Three coupled QDs Non-Fermi-Liquid MO AFM TSK

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 N - quantum dots R.Z. & J.B. PRB 74, (2006) Schrieffer-Wolf Perturbation in V k 4 -th order

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 N - quantum dots  Three different time-scales:  Separation of time-scales:  Different temperature-regimes: S=N/2 N/8 N/4 S(S+1)/3 S=N/2-1

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Spin-charge Kondo effect, separation of spin and charge Nambu spinor: a) d)

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Spin-charge Kondo effect, separation of spin and charge

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Conclusions  Using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime  Three QD’s: Good agreement between CPMC, GS and NRG. Different phases exist:  t’’> G : three peaks in G( d ) due to 3 molecular levels  t’’< G : a single peak in G( d ) of width ~ U  Two-stage Kondo regime, when t’’<T K  NFL behavior is found in the crossover regime. A good candidate for the experimental observation.

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 Conclusions  Using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime  DQD system: Large t d : Kondo regimes for odd DQD occupancy Small t d : Two-stage Kondo regime  Three QD’s: Good agreement between CPMC and GS. Different phases exist:  t’’> G : three peaks in G( d ) due to 3 molecular levels  t’’< G : a single peak in G( d ) of width ~ U  Two-stage Kondo regime, when t’’<T K  NFL behavior is found  N-dot system in parallel: RKKY interaction

www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007