A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.

Slides:



Advertisements
Similar presentations
Test practice Multiplication. Multiplication 9x2.
Advertisements

Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Kondo Physics from a Quantum Information Perspective
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
AB 11 22 33 44 55 66 77 88 99 10  20  19  18  17  16  15  14  13  12  11  21  22  23  24  25  26  27  28.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Quantum and Classical Coincidence Imaging and Interference
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Adatoms in Graphene Antonio H. Castro Neto Trieste, August 2008.
An Arbitrary Two-qubit Computation in 23 Elementary Gates or Less Stephen S. Bullock and Igor L. Markov University of Michigan Departments of Mathematics.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
(2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
Towards Single Molecule Electronics
Chapter 1 - Vector Analysis. Scalars and Vectors Scalar Fields (temperature) Vector Fields (gravitational, magnetic) Vector Algebra.
Transport properties: conductance and thermopower

On Measuring Coherence in Coupled Dangling-Bond Pair Dynamics Zahra Shaterzadeh-Yazdi International Iran Conference on Quantum Information September.
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
Thermal Boundary Resistance of the Superfluid 3 He A-B Phase Interface D.I. Bradley S.N. Fisher A.M. Guénault R.P. Haley H. Martin G.R. Pickett J.E. Roberts.
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
2003/8/18ISSP Int. Summer School Interaction effects in a transport through a point contact Collaborators A. Khaetskii (Univ. Basel) Y. Hirayama (NTT)
Physics Department, Beijing Normal University
The Classically Enhanced Father Protocol
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Kvantna prepletenost v nano sistemih (1) motivacija (2) definicija kvantne prepletenosti (3) statični in leteči kvantni biti (4) prepletenost na zahtevo.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
(2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Low Noise Single Electron Source Jin Zhang, Yury Sherkunov, Nicholas d’Ambrumenil, Boris Muzykantskii University of Warwick, U.K. Conference on Computational.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
Electromagnetic Fields ELC205B-Spring 2012 Department of Electronics and Electrical Communications Engineering Faculty of Engineering – Cairo University.
Example 4 Using Multiplication Properties SOLUTION Identity property of multiplication () 16 a. 6 = Find the product. () 16 a.b. 15– () 0 Multiplication.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Properties of Operations
Prof . Saeed Abdallah Prof. of physics Benha University
Quantum entanglement, Kondo effect, and electronic transport in
Properties of Addition and Multiplication
مراجعة عامة.
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
課程大綱 OUTLINE Double Integrals(二重積分) Triple Integrals(三重積分)
Conductance through coupled quantum dots
Kondo effect Him Hoang
Terms used in Multiplication
Dots 5 × TABLES MULTIPLICATION.
Dots 5 × TABLES MULTIPLICATION.
Dots 2 × TABLES MULTIPLICATION.
Law of universal gravitation
Dots 3 × TABLES MULTIPLICATION.
Dots 6 × TABLES MULTIPLICATION.
Dots 2 × TABLES MULTIPLICATION.
Dots 4 × TABLES MULTIPLICATION.
Spin thermopower in the overscreened Kondo model
Electronically Resonant Coherent Multidimensional Vibrational Spectroscopy John C. Wright, Department of Chemistry, University of Wisconsin- Madison Coherent.
Dots 3 × TABLES MULTIPLICATION.
第43回応用物理学科セミナー 日時: 11月21日(水) 16:10 – 17:10 場所:葛飾キャンパス研究棟8F第1セミナー室
Presentation transcript:

A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics Faculty of Mathematics and Physics University of Ljubljana *

Outline (1) Kondo (2) Multiple quantum dot systems (3) Entanglement

Conductance

Conductance

Conductance of non-interacting systems : U=0

Anderson model : U > 0

Kondo effect in a quantum dot

Test: single quantum dot

“Anderson model” with negative-U decrease

J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 72, (R) (2005)

Double quantum dot

J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 73, (R) (2006)

Double quantum dot 2 Kondo AFM 1 Kondo t t

Double quantum dot 2 Kondo AFM 1 Kondo t t

Double quantum dot 2 Kondo AFM 1 Kondo t t

Triple quantum dot

Entanglement in double quantum dots (concurrence) A B

Concurrence A B

A B

A B

A B......

Concurrence A B

Double quantum dots: entanglement versus the Kondo effect

Thermal equilibrium A-B entanglement

Zero magnetic field, thermal equilibrium A B

A B

A B

A B

A B

Double quantum dots: entanglement versus the Kondo effect

A. Ramšak, J. Mravlje, R. Žitko, and J. Bonča, quant-ph/ Double quantum dots: entanglement versus the Kondo effect