Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.

Slides:



Advertisements
Similar presentations
XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
Advertisements

ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, M.G. Bell 2, T.R. Jarboe 1, B.A. Nelson 1, D.Mueller 2, R. Maqueda 3, R. Kaita 2,
Flux-surface closure DRAFT Bick Hooper July 11, 2012.
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
Physics of fusion power Lecture 10 : Running a discharge / diagnostics.
9/20/04NSTX RESULTS REVIEW NSTX rtEFIT implementation progress results NSTX 2004 RESULTS REVIEW September 20&21, 2004 REAL-TIME EQUILIBRIUM RECONSTRUCTION.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
Study of transport simulation on RF heated and current driven EAST plasma Siye Ding Under instruction of Prof. Baonian Wan 12/09/2009.
Coupling Solenoid-free Coaxial Helicity Injection Started Discharges to Induction in NSTX Office of Science R. Raman University of Washington For the NSTX.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)
Mid-Run Assessment - ISD S. Kaye, D. Gates 10 May 2006.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
1Physics Operators Course, PCS Navigation, D.J. Battaglia, September 15, 2015 Devon Battaglia, Keith Erickson, Dennis Mueller, Stefan Gerhardt, Roger Raman,
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
Solenoid-free Start-up and Ramp-up Progress and Plans for Office of Science R. Raman and D. Mueller For the NSTX Research Team NSTX 5 Year Plan.
NSTX-U cryo/particle control discussion #8 December 19, 2012 What have we done, or plan to do to be responsive to PAC questions, and in prep for 5 year.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
Absorber arc mitigation during CHI on NSTX D. Mueller, M.G. Bell, A.L. Roquemore, R. Raman, B.A. Nelson, T.R. Jarboe and the NSTX Research Team DPP09 Meeting.
Integration and Plasma Control D.A. Gates, M.G. Bell NSTX 5-Year Plan June 30-July 2, 2003.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Summary of the SFPS XPs R. Raman, D. Mueller University of Washington Princeton Plasma Physics Laboratory and the NSTX Research Team FY09 NSTX Results.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
Session I-B – Overview Talks Lithium in Magnetic Confinement Experiments S. MirnovLi collection experiments on T-11M and T-10 in framework of Li closed.
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
RFX-mod programme workshop, January 2009 Scenario and operational issues for high current L. Zanotto, R. Cavazzana, S. Dal Bello, F. Milani.
NCSX NCSX CDR May 21-23, 2002 H.W. Kugel Slide 1 Conceptual Design for NCSX Auxiliary Systems Heating, Fueling,Wall Conditioning and Vacuum Systems.
ASIPP HT-7 Behaviors of Impurity and Hydrogen Recycling on the HT-7 Tokamak J. Huang*, B.N. Wan, X.Z. Gong, Z.W. Wu and the HT-7 Team Institute of Plasma.
Low-density Start-up D. Mueller, M. Bell, S. Gerhardt, J. Menard, R. Raman, S. Sabbagh NSTX FY12 low density discussion: May 12, 2011.
Solenoid Free Plasma Startup Progress and Plans R. Raman, D. Mueller S.C. Jardin (Theory) for the NSTX Research Team NSTX PAC-29 PPPL B318 January 26-28,
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
1 JE 2.3 : X2 breakdown assist in presence of E tor Toroidal dynamics is expected to be important for breakdown process, especially if ionization avalanche.
GOLEM operation based on some results from CASTOR
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
NSTX-U Run Planning Guidance for 2015 NSTX-U Research Forum 1 FY2015 (and 2016) research milestones will guide prioritization of eXperimental Proposal.
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
V. A. Soukhanovskii Lawrence Livermore National Laboratory H. W. Kugel, R. Kaita, A. L. Roquemore Princeton Plasma Physics Laboratory NSTX Research Team.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.
Simulation of Non-Solenoidal Current Rampup in NSTX C. E. Kessel and NSTX Team Princeton Plasma Physics Laboratory APS-DPP Annual Meeting, Savannah, Georgia,
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Solenoid-free Plasma Start-up in NSTX using Transient CHI Office of Science 22 nd IAEA Fusion Energy Conference October 13-18, 2008, Geneva College W&M.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Design of Coaxial Helicity Injection on SUNIST Li ZENG Department of Engineering Physics, Tsinghua University Supervised by.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
XP 514: Thermal Electron Bernstein Wave Conversion to O-Mode at GHz G. Taylor, P. Efthimion, J. Wilgen, J. Caughman Goals for this experiment: –Measure.
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
EX/P2-15 ECRH Pre-ionization and Assisted Startup in HL-2A Tokamaks in HL-2A Tokamaks Xianming SONG*, Liaoyuan CHEN, Jinghua ZHANG Jun RAO, Jun ZHOU, Xiao.
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
Merging Start-up and Sustainment Experiments on UTST 15 th Intl. Workshop on Spherical Tori 2009, Madison, WI, Oct. 22, 2009 T. Yamada 1, R. Imazawa 2,
For the NSTX Five-Year Research Program 2009 – 2013 M.G. Bell Facility and Diagnostic Plans.
Demonstration of Coupling CHI Started Discharges to Induction in NSTX R. Raman 1, B.A. Nelson 1, T.R. Jarboe 1, D. Mueller 2, M.G. Bell 2, J. Menard 2,
C. Kessel, PPPL Standard breakdown is done at 5.4 T
Presentation transcript:

Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science

Tested staged firing capability for the capacitor bank -Crowbar system reliability needed to be improved -Capacitor bank timing flexibility needed Fast voltage monitoring system worked well Produced a few plasma discharges in the stuffed injector mode March 10: Commissioned newly installed CHI hardware 2 Flux savings from inductive drive of a Transient CHI started plasma (XP817) 5 Days - March 10-12, 31 & April 9, 2008 March 11: Conditioned the Lower Divertor Plates First ran a CHI-only and a CHI+OH discharge from 2007 Then ran about 15 high injector current plasma discharges -Injector current was ~30kA Plasma CHI plasma remained attached to the lower divertor plates -Could not observe spectroscopy signal decreases during conditioning Repeated the CHI-only and CHI+OH discharge -Saw small improvements Then conducted 1-hour D 2 GDC + 30min HeGDC + 5g TMB + 2 hour HeGDC Considerably more lines during D 2 GDC (mass 18, 20, 28, 32)

March 12: Main portion of CHI XP started Very productive day – Good progress made in multiple areas 1.Inductive discharge development that had reduced CS pre-charge First, inductive only discharges were run in which the pre-charge in the central solenoid was successfully reduced to 9kA (from the full value of 24kA). -This was an important step as it reduces the OH fringing field making it easier to setup the divertor flux footprints needed for initiating a CHI discharge under conditions of a pre-charged central solenoid. -Also helps assess if CHI startup could be used in NSTX during Outer PF startup. -Also useful for future CHI + Iron Core startup. 2.CHI discharge successfully initiated in the injector region with CS pre-charge Conditions needed for establishing a successful CHI breakdown during the presence of OH fringing fields were established. - These CHI flux conditions will be further optimized during a future run. 3

3.Reproduced good temperature CHI discharges with zero CS pre-charge CHI-only discharges were repeated and optimized. As in 2007, the CHI produced discharges grew very rapidly and contacted the absorber region. To reduce the CHI discharge growth rate, the staged firing capability of the new capacitor bank was used for the first time to first discharge a single capacitor, then after a delay - two capacitors. This technique compensated for the new divertor surface conditions and allowed us to re-establish the breakdown conditions used in The reduced growth rate of the CHI discharge in conjunction, resulted in the CHI discharge consistently reaching temperatures of 10-20eV (as in 2006). The measured temperatures and densities were not much different from those of inductively produced discharges during the first 10ms of a normal inductive startup 4 Staged bank capability allowed establishing good breakdown conditions from 2006

4.Saw first evidence for coupling to OH with good density and temperature signals During the four shots that attempted to couple these to induction, the discharge coupled to induction, but electron density and temperature profiles from Thomson scattering showed most of the plasma to be resting on the outer vessel region during the inductive phase (this was later confirmed by EFIT reconstruction). On the last discharge increased vertical field moved the plasma further inboard verifying the Thomson and EFIT results. 5 First observation of electron density during the OH coupling phase Plasma Current – Thomson Profiles are for the red trace

March 31: Demonstrated first good coupling of a CHI produced discharge to induction in NSTX Using March 12 shots, discharges initiated using 1 capacitor (total 7.5kJ initial stored energy) Pre-programmed PF coil currents used Discharges beyond 40ms were ramping up rapidly in Ip but were vertically unstable 6

March 31: Fast camera fish-eye view of a CHI started discharge 7 R. Maqueda, Phantom Camera

8 April 9: Demonstrated generation of a high quality discharge using a CHI startup target Discharges produced on March 31 were further improved, then successfully ramped up using zero pre-charge in the central solenoid to plasma currents exceeding 600kA. Used feedback control of outer gap and vertical position. Up to two capacitors used (15kJ initial stored energy). The CHI started discharges transitioned into a H-mode, reaching electron temperatures of 500eV and had had low plasma inductance similar to the type of discharges preferred for high-performance operation in NSTX. In some discharges both neutral beam injection and High Harmonic Fast Wave Heating were used. These discharges are essentially ready for a test with and without Lithium - Increased input power during the first 5ms would reduce flux consumption from OH (which is now used to overcome radiative losses in these plasmas)

9 CHI initiated and coupled to OH discharges with one capacitor (color) and an OH only Discharge (black)

10 CHI initiated and coupled to OH discharge with two capacitors (color) and OH only discharge (black). This discharge had CS gas injection and more NBI power.

11 With three capacitors the spectroscopic line intensities increase (Need to reduce low-Z impurities or provide additional input power)

12 Improve NSTX high performance discharges with CHI 1. Couple inductive ramp-up to CHI plasmas (R08-2) 2. Demonstrate significant ohmic flux savings using CHI - Test with Lithium - Further condition the divertor plates to allow operation with >2 capacitors - Increase CS voltage to 6kV (additional 200kW of input power) 3. Develop operating conditions aimed at improving the control - done and increasing the current and closed poloidal flux of CHI (for 2009 & 2010) 4. Increase high-performance plasma pulse lengths using CHI startup - Will naturally happen after step 2 Solenoid-Free Start-up and Ramp-up high-priority research

13 Good coupling of a CHI started discharge to induction has now been demonstrated in NSTX - An important milestone for NSTX, validating compatibility between CHI and standard inductive operation - H mode also obtained, validating compatibility with H-mode, an important step for achieving long-pulse discharges - Flux savings requires a cleaner divertor plate, more input power, or further reducing CHI start-up density, a well understood result from HIT-II experiments Flux savings using CHI (~3 days) - Further condition the divertor plates to allow operation with >2 capacitors - Test with Helium (suggested by M. Bell) and with D 2 doped with Methane (suggested by M. Ono) - After Li system begins routine operation - Test with Lithium - Increase CS voltage to 6kV (additional 200kW of input power) Test CHI Startup with pre-charged CS (1-2 days) - Helps prepare for 2009, with Outer PF startup - Reload & test an outer PF startup discharge with CHI that was tried in 2005 Conclusions and Plans for Balance of FY 2008