G(r) r – r e r – r e is the vibrational coordinate rere
Vibrational Energy Levels Harmonic Oscillator G(v) = ω (v + ½) cm -1
Equidistantly spaced levels G(r) r
This is a quite unrealistic curve G(r) r
G(r) r H + H
G(r) r H + H Dissociation
G(r) r H + H Dissociation Chemical Bond Energies
G(r) r H + H Dissociation Chemical Bond Energies DeDe
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
G(r) r H + H Dissociation
G(r) r H + H Dissociation
G(r) r H + H Dissociation 0
G(r) r H + H Dissociation 1 0
G(r) r H + H Dissociation 2 1 0
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
G(r) r H + H Dissociation v=
H + H Nuclear Energies Chemical Energies E(r) r 0 Rotational levels
H + H Nuclear Energies Chemical Energies E(r) r 0 Morse Potential V(r) = D e (1-e -a(r-re) ) 2 Anharmonicity G(v) = ω(v+ ½) - α ω 2 (v+ ½) 2 α = ¼D e -4
G(r) r – r e rere ½ ω 1½ ω 2½ ω 3½ ω 4½ ω 5½ ω 6½ ω Notice that the energy levels are equidistantly space by ω v = 6 v = 5 v = 4 v = 3 v = 2 v = 1 v = 0
Harry Kroto 2004
H + H Nuclear Energies Chemical Energies r E(r) v= Harry Kroto 2004
G(r) r H + H Dissociation Chemical Bond Energies D e is called the Equilibrium Dissociation Energy Nuclear Energies DeDe
Harry Kroto 2004
E(r) r
- gif -
Harry Kroto 2004