Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.

Slides:



Advertisements
Similar presentations
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Advertisements

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
MGMT 276: Statistical Inference in Management Spring, 2014 Green sheets.
Chapter 1: Introduction to Statistics
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Modern Languages Row A Row B Row C Row D Row E Row F Row G Row H Row J Row K Row L Row M
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Modern Languages Row A Row B Row C Row D Row E Row F Row G Row H Row J Row K Row L Row M
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
MGMT 276: Statistical Inference in Management Fall, 2014 Green sheets.
Hand out z tables Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
1 Statistics Statistics can be found in all aspects of life:
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Please sit in your assigned seat INTEGRATED LEARNING CENTER
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Alyson Lecturer’s desk Chris Flo Jun Trey Projection Booth Screen
Alyson Lecturer’s desk Chris Flo Jun Trey Projection Booth Screen
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Hand in Homework to your TA
Presentation transcript:

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays & Fridays.

Everyone will want to be enrolled in one of the lab sessions Labs continue this week

Schedule of readings Before next exam (February 12 th ) Please read chapters in OpenStax textbook Please read Appendix D, E & F online On syllabus this is referred to as online readings 1, 2 & 3 Please read Chapters 1, 5, 6 and 13 in Plous Chapter 1: Selective Perception Chapter 5: Plasticity Chapter 6: Effects of Question Wording and Framing Chapter 13: Anchoring and Adjustment

Remember bring your writing assignment forms notebook and clickers to each lecture Register your clicker by February 1 st and receive extra credit! student.turningtechnologies.com (Please note there is no “www”)

By the end of lecture today 1/27/16 Use this as your study guide Population (census) versus sample Descriptive or inferential Parameter versus statistic Random sampling vs Random assignment Random versus non-random sampling techniques Simple random sampling Systematic random sampling Stratified sampling Cluster sampling Convenience sampling Snowball sampling Judgment sampling

Homework Assignment 4 Integrating Methodologies and Graphing with Excel Please print out and complete this homework worksheet And hand it in during class on Friday Due: Friday, January 29 th

Project 1 - Likert Scale - Correlations - Comparing two means (bar graph) Questions?

A measurement that has high validity is one that a. measures what it intends to measure b. will give you similar results with each replication c. will compare the performance of the same subjects in each experimental condition d. will compare the performance of different subjects in each experimental condition Let’s try one

A study explored whether conservatives or liberals had more bumper stickers on their cars. The researchers ask 100 activists to complete a conservative/liberal values test, then used those results to categorize them as liberal or conservative. Then they identified the 30 most conservative activists and the 30 most liberal activists and measured how many bumper stickers each activist had on their car. The independent variable in this study was a. the performance of the activists b. the number of bumper stickers found on their car c. political status of participant (liberal versus conservative) as determined by their performance on the liberal/conservative test d. whether or not the subjects had bumper stickers on their car Let’s try one

A study explored whether conservatives or liberals had more bumper stickers on their cars. The researchers asked 100 activists to complete a conservative/liberal values test, then used those results to categorize them as liberal or conservative. Then they identified the 30 most conservative activists and the 30 most liberal activists and measured how many bumper stickers each activist had on their car. The dependent variable in this study was a. the performance of the activists b. the number of bumper stickers found on their car c. political status of participant (liberal versus conservative) as determined by their performance on the liberal/conservative test d. whether or not the subjects had bumper stickers on their car Let’s try one

A study explored whether conservatives or liberals had more bumper stickers on their cars. The researchers 100 activists to complete a conservative/liberal values test, then used those results to categorize them as liberal or conservative. Then they identified the 30 most conservative activists and the 30 most liberal activists and measured how many bumper stickers each activist had on their car. This study was a a. within participant experiment b. between participant experiment c. mixed participant experiment d. non-participant experiment

Let’s try one A study explored whether conservatives or liberals had more bumper stickers on their cars. They had 100 activists complete liberal/conservative test. Then, they split the 100 activists into 2 groups (conservatives and liberals). They then measured how many bumper stickers each activist had on their car. This study used a a. true experimental design b. quasi-experiment design c. correlational design d. mixed design

Writing Assignment – Pop Quiz Ari conducted a watermelon seed spitting experiment. She wanted to know if people can spit farther if they get a running start. She tested 100 people. She randomly assigned them into one of two groups. One group stood still on the starting line and spit their watermelon seeds as far as they could. The second group was allowed to run up to the starting line before they spit their watermelon seeds. She measured how far each person spit their watermelon seeds. Please answer the following questions 1. What is the independent variable? 2. The independent variable: Is it continuous or discrete? 3. The independent variable: Is it nominal, ordinal, interval or ratio? 4. What is the dependent variable? 5. The dependent variable: Is it continuous or discrete? 6. The dependent variable: Is it nominal, ordinal, interval or ratio? 7. Is this a quasi or true experiment? 8. Is this a within or between participant design 9. Is this a single blind, double blind or not at all blind experiment? 10. Be sure to put your name and CID on this page

Writing Assignment – Pop Quiz Ari conducted a watermelon seed spitting experiment. She wanted to know if people can spit farther if they get a running start. She tested 100 people. She randomly assigned them into one of two groups. One group stood still on the starting line and spit their watermelon seeds as far as they could. The second group was allowed to run up to the starting line before they spit their watermelon seeds. She measured how far each person spit their watermelon seeds. Please answer the following questions 1. What is the independent variable? 2. The independent variable: Is it continuous or discrete? 3. The independent variable: Is it nominal, ordinal, interval or ratio? 4. What is the dependent variable? 5. The dependent variable: Is it continuous or discrete? 6. The dependent variable: Is it nominal, ordinal, interval or ratio? 7. Is this a quasi or true experiment? 8. Is this a within or between participant design 9. Is this a single blind, double blind or not at all blind experiment? 10. Be sure to put your name and CID on this page Running versus standing still Discrete Nominal Distance that the seed was spit Continuous Ratio True Experiment Between Not at all

Random sampling vs Random assignment Random sampling of participants into experiment: Each person in the population has an equal chance of being selected to be in the sample Population: The entire group of people about whom a researcher wants to learn Sample: The subgroup of people who actually participate in a research study Random assignment of participants into groups: Any subject had an equal chance of getting assigned to either condition (related to quasi versus true experiment) We know this one Let’s explore this one

Sample versus population (census) How is a census different from a sample? Census measures each person in the specific population Sample measures a subset of the population and infers about the population – representative sample is good What’s better? Use of existing survey data U.S. Census Family size, fertility, occupation The General Social Survey Surveys sample of US citizens over 1,000 items Same questions asked each year

Parameter – Measurement or characteristic of the population Usually unknown (only estimated) Usually represented by Greek letters (µ) Population (census) versus sample Parameter versus statistic pronounced “mu ” pronounced “mew ” Statistic – Numerical value calculated from a sample Usually represented by Roman letters (x) pronounced “x bar ”

Descriptive statistics - organizing and summarizing data Descriptive or inferential? Inferential statistics - generalizing beyond actual observations making “inferences” based on data collected What is the average height of the basketball team? In this class, percentage of students who support the death penalty? Based on the data collected from the students in this class we can conclude that 60% of the students at this university support the death penalty Measured all of the players and reported the average height Measured all of the students in class and reported percentage who said “yes” Measured only a sample of the players and reported the average height for team Measured only a sample of the students in class and reported percentage who said “yes” To determine this we have to consider the methodologies used in collecting the data

Descriptive statistics - organizing and summarizing data Descriptive or inferential? Inferential statistics - generalizing beyond actual observations making “inferences” based on data collected Men are in general taller than women Shoe size is not a good predictor of intelligence Blondes have more fun The average age of students at the U of A is 21 Measured all of the citizens of Arizona and reported heights Measured all of the shoe sizes and IQ of students of 20 universities Asked 500 actresses to complete a happiness survey Asked all students in the fraternities and sororities their age

Simple random sampling: each person from the population has an equal probability of being included Sample frame = how you define population Sample frame = how you define population =RANDBETWEEN(1,115) Let’s take a sample …a random sample Question: Average weight of U of A football player Sample frame population of the U of A football team Or, you can use excel to provide number for random sample Random number table – List of random numbers Random number table – List of random numbers 64 Pick 64 th name on the list (64 is just an example here) Pick 24 th name on the list

Systematic random sampling: A probability sampling technique that involves selecting every technique that involves selecting every kth person from a sampling frame Other examples of systematic random sampling 1) check every 2000 th light bulb 2) survey every 10 th voter You pick the number

Stratified sampling: sampling technique that involves dividing a sample into subgroups (or strata) and then selecting samples from each of these groups - sampling technique can maintain ratios for the different groups Average number of speeding tickets 17.7% of sample are Pre-business majors 4.6% of sample are Psychology majors 4.6% of sample are Psychology majors 2.8% of sample are Biology majors 2.8% of sample are Biology majors 2.4% of sample are Architecture majors 2.4% of sample are Architecture majors etc etc Average cost for text books for a semester 12% of sample is from California 7% of sample is from Texas 6% of sample is from Florida 6% from New York 4% from Illinois 4% from Ohio 4% from Pennsylvania 3% from Michigan etc

Cluster sampling: sampling technique divides a population sample into subgroups (or clusters) by region or physical space. Can either measure everyone or select samples for each cluster Textbook prices Southwest schools Southwest schools Midwest schools Midwest schools Northwest schools Northwest schools etc etc Average student income, survey by Old main area Old main area Near McClelland Around Main Gate etc Patient satisfaction for hospital 7 th floor (near maternity ward) 7 th floor (near maternity ward) 5 th floor (near physical rehab) 5 th floor (near physical rehab) 2 nd floor (near trauma center) 2 nd floor (near trauma center) etc etc