Muonium – Physics of a Most Fundamental Atom Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Recent development of a point positive muon source by laser excitation of muonium atoms Introduction Experiment at the RIKEN-RAL Muon facility Future prospect.
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
Is B s 0 production by neutrino interactions interesting? Presented at the Super-B factory workshop as an alternative approach Nickolas Solomey 21 April.
Laura Gilbert How We Study Particles. The basics of particle physics! Matter is all made up of particles… Fundamental particle: LEPTON Fundamental particles:
Yingchuan Li Weak Mixing Angle and EIC INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010.
Muon g-2 experimental results & theoretical developments
1 V cb : experimental and theoretical highlights Marina Artuso Syracuse University.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Smashing the Standard Model: Physics at the CERN LHC
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Muon capture Durham ‘05 Klaus Jungmann, May 2005 Muon capture.
J. Nielsen1 The ATLAS experiment at the Large Hadron Collider Jason Nielsen UC Santa Cruz VERTEX 2004 July 28, 2010.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
September 23, 2008 Erice Cem Güçlü İstanbul Technical University Physics Department Production of electron-positron pairs by nuclear dissociation.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
G-2 and the future of physics Student: A.C. Berceanu Supervisors: Olaf Scholten Gerco Onderwater.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
31 January 2003 NuPECC Town Meeting, January/February GSI 1 Klaus Jungmann, 31 Janur 2003 NuPECC Town Report of Fundamental Interaction.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
May CERN Physics with a Multi-MWProton Source 1 Klaus Jungmann, Physics with a Megawatt Proto Source, CERN 25 May 2004 Fundamental Symmetries and.
WG4 Summary -Intense Muon Physics- Conveners Y. Semertzdis (BNL), M. Grassi (Pisa), K. Ishida (RIKEN) summary-1 for muon applications by K. Ishida.
LHC and Search for Higgs Boson Farhang Amiri Physics Department Weber State University Farhang Amiri Physics Department Weber State University.
PRISM and Neutrino Factory in Japan Y. Kuno KEK, IPNS January 19th, 2000 at CERN.
1 Muon Physics Project X Workshop Fermilab 17 November 2007.
From Luigi DiLella, Summer Student Program
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
1 Antimatter 1Antimatter and the Universe 2Antimatter in the Laboratory 3Antimatter in Daily Life.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
NEUTRINO PHYSICS 1. Historical milestones 2. Neutrinos at accelerators 3. Solar and atmospheric neutrinos 4. Neutrino oscillations 5. Neutrino astronomy.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Leonid AFANASYEV JOINT INSTITUTE FOR NUCLEAR RESEARCH on behalf of the DIRAC collaboration 37 th International Conference on High Energy Physics 2 – 9.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
1 Electroweak Physics Lecture 5. 2 Contents Top quark mass measurements at Tevatron Electroweak Measurements at low energy: –Neutral Currents at low momentum.
Atomic Physics – Part 3 Ongoing Theory Development To accompany Pearson Physics PowerPoint presentation by R. Schultz
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
Yasuhiro Okada (KEK) February 4, 2005 at KEK
Introduction to CERN Activities
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
General motivation S. Geer, K. Long Charge: (July collaboration meeting) Neutrinos and our lives (PR motivation) Neutrino oscillation and the role of NuFact.
Yannis K. Semertzidis Brookhaven National Laboratory Fundamental Interactions Trento/Italy, June 2004 Theoretical and Experimental Considerations.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
Monday, Mar. 3, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #12 Monday, Mar. 3, 2003 Dr. Jae Yu 1.Neutrino Oscillation Measurements 1.Atmospheric.
STERILE NEUTRINOS and other exotica. Neutrino physics Official do-it list  13 ? Improve  12,  23 Mass hierarchy Improve m 1, m 2, m 3 Dirac or Majorana.
Klaus P. Jungmann via B. Lee Roberts -FNAL Proton Driver Workshop – October 2004 Precision Measurements in Muon Physics A Sampler of Fundmental Measurements.
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Univ. Tokyo & RIKEN Y. Yamazaki 2008/7/17 EMMI kick-off
Weak interactions I. Radulescu Sub-atomic physics seminar October 2005 _____________________________________________ Nuclear Geophysics Division Kernfysisch.
The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch.
Yannis K. Semertzidis Brookhaven National Laboratory HEP Seminar SLAC, 27 April 2004 Muon g-2: Powerful Probe of Physics Beyond the SM. Present Status.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
International Conference on Science and Technology for FAIR in Europe 2014 APPA Cave Instrumentation for Plasma Physics Vincent Bagnoud, GSI and Helmholtz.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration.
     Possibility of precise
G. Arnison et al., UA1 Collaboration
Particle Physics: Status and Perspectives Part 8: The Precision Frontier Manfred Jeitler SS 2018.
Presentation transcript:

Muonium – Physics of a Most Fundamental Atom Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic Theory Fundamental Constants Fundamental Symmetries Search for New Physics Atomic Physics at Accelerators Precision Measurements … Condensed Matter Physics Chemistry Low energy Muon Beams Muonium (M)

What is it ? What is it good for ? test of electromagnetic bound state theory test of electromagnetic bound state theory fundamental constants fundamental constants tests of fundamental symmetries tests of fundamental symmetries search for New Physics search for New Physics tool for condensed matter research tool for condensed matter research …… …… “Muonium is the bound state of a positive Muon and an Electron” positive Muon and an Electron” “point-like” particles “point-like” particles no (severe) strong interaction effects no (severe) strong interaction effects calculable to required accuracy calculable to required accuracy Muonium (M)

hydrogen-like atom but no strong interaction

Past of Muonium (Ground State Hyperfine Structure) Discovery of Muonium 1960 Hyperfine Structure addressed as an Important Quantity From: V. Telegdi, in: “A Festschrift for Vernon W. Hughes”, 1990 There was stimulating competition

Theorists are confident that muonium HFS Can be calculated to 10 Hz, if needed (Eides, Pachucki,…)  magnetic moment  , 

The worlds most intense quasi continuous muon source - the LAMPF Los Alamos Meson Physics Facility

Muonium Hyperfine Structure Solenoid   e    in SS Gated Detector MW-Resonator/Kr target Yale - Heidelberg - Los Alamos

Muonium Hyperfine Structure Solenoid   e    in SS Gated Detector MW-Resonator/Kr target Yale - Heidelberg - Los Alamos pulsed beam essential old Muonium freq. scan B scan

Results from LAMPF Muonium HFS Experiment measured: 12 = (35) Hz( 18 ppb) 34 = (43) Hz( 17 ppb) from Breit-Rabi equation: 12    exp = (53) Hz( 12 ppb)  theo = (520)(34)(<100) Hz (<120 ppb)  12      p = (37) (120 ppb) alternatively derived: m   m e = (24)(120 ppb)    ppb)

Results from LAMPF Muonium HFS Experiment measured: 12 = (35) Hz( 18 ppb) 34 = (43) Hz( 17 ppb) from Breit-Rabi equation: 12    exp = (53) Hz( 12 ppb)  theo = (520)(34)(<100) Hz (<120 ppb)  12      p = (37) (120 ppb) alternatively derived: m   m e = (24)(120 ppb)    ppb)

NEVIS CHICAGO-SREL LAMPF LAMPF latest experiment Quoted Uncertainty [kHz] Year History of Muonium Ground State Hyperfine Splitting Measurements

 -1 = (5)  -1 = X X (1) CODATA 2002

muonium and hydrogen hfs → proton structure

? m mm r 0 00 K KK || K     avg a | e a e a| avg g | e g e g| e r             CPTbreakb,a μμ Invariance LorentzbreakH,d,c,b,a μν μμ ? Lepton Magnetic Anomalies in CPT and Lorentz Non-Invariant Models CPT tests Are they comparable- Which one is appropriate  Use common ground, e.g. energies Leptons in External Magnetic Field Bluhm, Kostelecky, Russell, Phys.Rev. D 57,3932 (1998) For g-2 Experiments : Dehmelt, Mittleman,Van Dyck, Schwinberg, hep-ph/ μμ qAiiD 0D μ γ 5 γ μν id ν D μ γ μν ic μν σ H 2 1 μ γ 5 γ μ b μ γ μ am μ D μ (iγ equation DIRAC violating Lorentz and CPT generic    ψ ) 2 c l m a Δω l upspin E | l downspin E l upspin E| l r l 3 4b l a ω l a ω a Δω             avg ll 2 l c l a |aa| cm ω r     μ r e r      :: muonelectron CPT CPT – Violation Lorentz Invariance Violation What is best CPT test ? New Ansatz (Kostelecky) K 0  GeV/c 2 n  GeV/c 2 p  GeV/c 2 e-  GeV/c 2 Future: Anti hydrogen  GeV/c 2 often quoted: K 0 - K 0 mass difference ( ) e - - e + g- factors (2* ) We need an interaction with a finite strength ! What about Second Generation Leptons?

CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2 * GeV Muon g-2: new interaction below 4 * GeV (CERN) 15 times better expected from BNL V.W. Hughes et al., Phys.Rev. Lett. 87, (2001)

Present Status of Muonium Ground State Hyperfine Structure No Experimental Activities known at this time Refinement of Theory going on Refinement of Theory going one.g.  Eides, Grotch, “Three-Loop Radiative-Recoil Corrections to Hyerfine Splitting in Muonium”, Phys.Rev.D67, (2003) and hep-ph/ (2005) in Muonium”, Phys.Rev.D67, (2003) and hep-ph/ (2005)  Marciano, “Muonium Lifetime and Heavy Quark Decays”, hep-ph/ (2004) (2004) ... Exploitation of the Atom in Condensed Matter Science Exploitation of the Atom in Condensed Matter Sciencee.g.  Ivanter et al. “On the anomalous muonium hyperfine structure in silicon” J.Phys.: Condens. Matter 15, 7419 (2003) J.Phys.: Condens. Matter 15, 7419 (2003)  ….

NEVIS CHICAGO-SREL LAMPF LAMPF latest experiment Quoted Uncertainty [kHz] Year History of Muonium Ground State Hyperfine Splitting Measurements

Future Possibilities for Muonium Ground State Hyperfine Structure LAMPF Experiment limited by STATISTICS  more MUONS needed  factor > 100 over LAMPF – pulsed > 5*10 8  + /s  factor > 100 over LAMPF – pulsed > 5*10 8  + /s below 28 MeV/c below 28 MeV/c  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ?  FNAL  ……..

What other experiments besides the Ground State Hyperfine Structure are possible ?

Gas Stop Gas Stop Yields up to 100% foreign gas effects Polarization up to 50% (B=0) 100% (B>>1T)  + +e   ++ Kr, Ar Beam Foil Beam Foil Muonium in Vacuo keV energy n=2 state populated fast muonium   + 50%  + e  1%  + e  e  0.01% ++ SiO 2 Powder SiO 2 Powder thermal Muonium in Vacuo M(2s) /M(1s) < Yields up to 12% Polarization 39(9)% velocity 1.5 cm/   ++ M Methods of Muonium Production

Completed Experiments on Muonium 1s-2s Interval Pioneering effort at KEK Pioneering effort at KEK ( Chu,Mills,Nagamine et al.) ( Chu,Mills,Nagamine et al.) Precision measurement at RAL Precision measurement at RAL ( Heidelberg – Oxford – Rutherford – Strathclyde – Siberia –Yale ( Heidelberg – Oxford – Rutherford – Strathclyde – Siberia –Yale Collaboration) Collaboration)

Muonium 1S-2S Experiment -.25 R  1S 2S 244 nm Energy -R  0    e   kin Laser Diagnostics   Detection   in  ee Target Mirror Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale

The most intense pulsed muon source – ISIS at the RAL Rutherford Appleton Laboratory

Muonium 1S-2S Experiment -.25 R  1S 2S 244 nm Energy -R  0    e   kin Laser Diagnostics   Detection   in  ee Target Mirror Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale

Muonium1s-2s At RAL

Results:  1s-2s = (9.1)(3.7) MHz  1s-2s = (1.4) MHz m    = (17) m e (0.8ppm) q     = [ (2.1) ] q e-  (2.2 ppb) exp theo

Future Possibilities for Muonium 1s-2s Interval No Precision Experiment Activities known at this time No Precision Experiment Activities known at this time Exploitation of Laser Spectroscopy to obtain Exploitation of Laser Spectroscopy to obtain “Slow Muons” Condensed Matter Science (K. Nagamine et Y Matsuda et al J. Phys. G: Nucl. Part. Phys. 29, 2039 (2003)

Future Possibilities for Muonium 1s-2s Interval RAL Experiment limited by STATISTICS RAL Experiment limited by STATISTICS  more MUONS needed  factor > 1000 over RAL – pulsed > 5*10 8  + /s below 28 MeV/c below 28 MeV/c  would enable cw laser spectroscopy ! (precision !)  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ? .....

QED mm mm  , , g   + e -  HFS, n=1  QED corrections weak contribution  + e -  1S-2S m  QED corrections  g-2 hadronic contribution weak contribution New Physics

a  = a m ca m c e  B = aa pp aa pp  pp - Experiment: Fundamental Constants of Interest to g-2 Theory: * need  for muon ! * hadronic and weak corrections * various experimental sources of  better 100ppb>  need constants at very moderate *  no concern for (g-2)  even with recent corrections accuracy *  a and B (  p ) measured in (g-2)  experiment * c is a defined quantity * m  (   ) is measured in muonium spectroscopy (hfs) NEW 2000 * e  is measured in muonium spectroscopy (1s -2s) NEW 1999 *  p in water known >> probe shape dependence *  3He to  p in water >> gas has no shape effect being improved

 Any New Effort to improve significantly on the Muon Magnetic Anomaly will need better constants ! Where should they come from, if not from Muonium Spectroscopy ?

Muonium – Antimuonium Conversion up to Now Did first Search for Conversion Amato et al. Phys.Rev.Lett. 21, 1709 (1968) Predicted M-M Conversion Named System “Muonium” ?

The most intense continuos source of muons – the Cyclotron Facility at the PSI Paul Scherrer Institut

Present Activities concerning Muonium – Antimuonium Conversion No Experimental Activities known at this time No Experimental Activities known at this time Theory is proposing lots of models Theory is proposing lots of modelse.g.  Clark, Love “Muonium-Antimuonium Oscillations and Massive Majorana Neutrinos”, hep-ph/ (2003) hep-ph/ (2003)  Gusso, Pires, Pires, Rodrigues da Silva “Minimal Model, lepton Mixing and Muonium- Antimuonium Conversion”, hep-ph/ (2002) Muonium- Antimuonium Conversion”, hep-ph/ (2002)  Cvetic,Dib, Kim, Kim, “Muonium-Antimuonium Conversion in models with heavy neutrinos”, hep-ph/ (2005) hep-ph/ (2005)  Applequist, Christensen, Piai, Schrock “ Flavour-Changing Processes in Extended Technicolor”, Phys. Rev.D70, (2004) Phys. Rev.D70, (2004)  ….

Future Possibilities for Muonium – Antimuonium Searches PSI Experiment limited by STATISTICS  more MUONS needed  factor > 1000 over PSI – pulsed > 1*10 9  + /s  factor > 1000 over PSI – pulsed > 1*10 9  + /s below 28 MeV/c below 28 MeV/c  new ACCELERATORS  J-PARC ?  Neutrino Factory ?  Eurisol ?  GSI ?  FNAL .....

Old Muonium for Muonium-Antimuonium Conversion ? P(M)  sin 2 [const * (G MM /G F )*t]*exp[-  *t] Background  exp(- n  *t) ; n-fold coincidence detection For G MM << G F M gains over Background P(M) / Background  t 2 * exp[+(n-1)*  *t]  Pulsed ACCELERATOR

There is not only Muonium Spectroscopy waiting for a push by Intense Muon Beams

Summary Muonium has provided information on –QED –lepton flavor conservation –fundamental constants fine-structure constant  m  /m e   /  p – proton structure At a high-flux muon facility all of these could be improved.

Muon Experiments Possible at a CERN Neutrino Factory - Expected Improvements Muon Physics Possibilities at Any High Power Proton Driver i.e.  4 MW

< < < < Muon Physics Possibilities at Any High Power Proton Driver i.e.  4 MW K Jungmann 18-Apr-2001

J-PARC is one Possibility There are others as well: as well: Neutrino Factory ? Neutrino Factory ? Muon Collider ? Muon Collider ? GSI ? GSI ? …. ….

Thank You Vernon for providing us the perhaps most perhaps most Ideal Atom Muonium (M)