2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv:1101.0872[hep-th]

Slides:



Advertisements
Similar presentations
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Advertisements

 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra Yoshinori Honma (SOKENDAI, KEK) in collaboration with M. Ogawa and.
Brane Tilings and New Horizons Beyond Them Calabi-Yau Manifolds, Quivers and Graphs Sebastián Franco Durham University Lecture 2.
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Summing planar diagrams
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
M-Theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M.
Summing Up All Genus Free Energy of ABJM Matrix Model Sanefumi Moriyama (Nagoya U) JHEP [arXiv: ] with H.Fuji and S.Hirano.
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Higgs Bundles and String Phenomenology M. Wijnholt, LMU Munich String-Math Philadelphia, June
INSTANTON PARTITION FUNCTIONS Nikita Nekrasov IHES (Bures-sur-Yvette) & ITEP (Moscow)QUARKS-2008 May 25, 2008 Nikita Nekrasov IHES (Bures-sur-Yvette) &
S 3 /Z n partition function and Dualities Yosuke Imamura Tokyo Institute of Technology 15 Oct. YKIS2012 Based on arXiv: Y.I and Daisuke.
Moduli stabilization and flavor structure in 5D SUGRA with multi moduli Yutaka Sakamura (RIKEN) in collaboration with Hiroyuki Abe (Yukawa Inst.) June.
Moduli stabilization and flavor structure in 5D SUGRA with multi moduli Yutaka Sakamura (RIKEN) with Hiroyuki Abe (Yukawa Inst.) Aug. 1, arXiv:
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Anomaly cancellations on heterotic 5-branes ( 前編 ) 矢田 雅哉.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
新しいラージN極限と インスタントン 柴 正太郎 益川塾
Boundaries in Rigid and Local Susy Dmitry V. Belyaev and Peter van Nieuwenhuizen.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
3-Sasakian geometry from M2 branes Daniel L. Jafferis Rutgers University Kähler and Sasakian Geometry in Rome 19 June, 2009 Based on work with: A. Tomasiello;
Two Dimensional Gauge Theories and Quantum Integrable Systems Nikita Nekrasov IHES Imperial College April 10, 2008 Nikita Nekrasov IHES Imperial College.
Takayuki Nagashima Tokyo Institute of Technology In collaboration with M.Eto (Pisa U.), T.Fujimori (TIT), M.Nitta (Keio U.), K.Ohashi (Cambridge U.) and.
1 Lattice Formulation of Two Dimensional Topological Field Theory Tomohisa Takimi ( 基研、理研 ) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2 hep-lat
AGT 関係式 (1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 2 日(水) 12:30-14:30.
Extra Dimensional Models with Magnetic Fluxes Tatsuo Kobayashi 1. Introduction 2. Magnetized extra dimensions 3. N-point couplings and flavor symmetries.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
D-term Dynamical Supersymmetry Breaking K. Fujiwara and, H.I. and M. Sakaguchi arXiv: hep-th/ , P. T. P. 113 arXiv: hep-th/ , N. P. B 723 H.
Supersymmetric Quantum Field and String Theories and Integrable Lattice Models Nikita Nekrasov Integrability in Gauge and String Theory Workshop Utrecht.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Localization of gravity on Higgs vortices with B. de Carlos Jesús M. Moreno IFT Madrid Hanoi, August 7th hep-th/
Meta-stable Supersymmetry Breaking in Spontaneously Broken N=2 SQCD Shin Sasaki (Univ. of Helsinki) [hep-th/ (M.Arai, C.Montonen, N.Okada and.
Gauge invariant Lagrangian for Massive bosonic higher spin field Hiroyuki Takata Tomsk state pedagogical university(ТГПУ) Tomsk, Russia Hep-th
Higgs branch localization of 3d theories Masazumi Honda Progress in the synthesis of integrabilities arising from gauge-string Hotel Biwako.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
AGT 関係式 (2) AGT 関係式 (String Advanced Lectures No.19) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 9 日(水) 12:30-14:30.
Gauge Theory and Topological Strings Geometry Conference in honour of Nigel Hitchin - RHD, C. Vafa, E.Verlinde, hep-th/ J. de Boer, M. Chang,
Discrete R-symmetry anomalies in heterotic orbifold models Hiroshi Ohki Takeshi Araki Kang-Sin Choi Tatsuo Kobayashi Jisuke Kubo (Kyoto univ.) (Kanazawa.
Meta-stable Supersymmetry Breaking in an N=1 Perturbed Seiberg-Witten Theory Shin Sasaki (Univ. of Helsinki, Helsinki Inst. of Physics) Phys. Rev. D76.
Spectral Networks and Their Applications Gregory Moore, Rutgers University Caltech, March, 2012 Davide Gaiotto, G.M., Andy Neitzke Spectral Networks and.
Laboratoire Charles Coulomb
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
Extra Dimensional Models with Magnetic Fluxes Tatsuo Kobayashi 1. Introduction 2. Magnetized extra dimensions 3. Models 4 . N-point couplings and flavor.
Takaaki Nomura(Saitama univ)
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
A.Sako S.Kuroki T.Ishikawa Graduate school of Mathematics, Hiroshima University Graduate school of Science, Hiroshima University Higashi-Hiroshima ,Japan.
Holomorphic Anomaly Mediation Yu Nakayama (Caltech) arXiv: and to appear.
Three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP) hep-th/
Marginally Deformed Gauge Theories from Twistor String Theory Jun-Bao Wu (SISSA) based on work with Peng Gao hep-th/ v3 KITPC Beijing, October 18,
Exact Results for 5d SCFTs with gravity duals Daniel L. Jafferis Harvard University Yukawa International Seminar Kyoto, Japan Oct 15, 2012 D.J., Silviu.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
GEOMETRIC DESCRIPTION OF THE STANDARD MODEL Kang-Sin CHOI Ewha Womans University SUSY 14, University of Manchester June 22, 2014 Based on
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
CERNTR, 16 February 2012 Non-perturbative Physics from String Theory Dr. Can Kozçaz, CERN.
Electic-Magnetic Duality On A Half-Space Edward Witten March 9, 2008.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Takaaki Nomura(Saitama univ)
Three family GUT-like models from heterotic string
Magnetic supersymmetry breaking
Chiral Algebra and BPS Spectrum of Argyres-Douglas theories
Dimer models and orientifolds
Deformed Prepotential, Quantum Integrable System and Liouville Field Theory Kazunobu Maruyoshi  Yukawa Institute.
AGT 関係式(1) Gaiotto の議論 (String Advanced Lectures No.18)
Presentation transcript:

2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]

2011 年 4 月 27 日 2 Moore, Nekrasov & Shatashivli (1998), Nekrasov(2002) Instanton partition function in N =2 4-dim SYM k -Instanton partition function by Localization formula ex) G=U(N) vector multiplet Instanton number

2011 年 4 月 27 日 3 Instanton partition function with surface operator in N =2 SYM Alday et al(2009), Alday & Tachikawa, Bruzzo et al(2010) Instanton numberThe first Chern number Dimofte, Gukov & Hollands (2010) : Vortex partition function in N =(2,2) 2dim SQED ?

2011 年 4 月 27 日 4 The moduli space of abelian vortex with vortex number k in two dimension is isomorphic to Jaffe & Taubes(1980) Equivariant character k -vortex partition function for N =(2,2) SQED with single chiral multiplet contour integral representation

2011 年 4 月 27 日 5 Contribution from a vector multiplet Contribution from a chiral multiplet vortex partition function of N =(2,2) SQED with chiral multiplet ? twisted mass

2011 年 4 月 27 日 6 5d Nekrasov partition(K-theoretic instanton counting) Introduction of Surface operator Introduction of A-brane Closed A-model on toric CY G=U(1) 4-dim pure N =2 SYM ex) Theory induced on the surface operator is N =(2,2) U(1) SQED with single chiral mutiplet string sidegauge theory side Kozcaz, Pasquetti & Wyllard(2010)

1. Introduction  2.Vortices in 2d super Yang-Mills theories  3. Localization of vortex in N =(2,2) SYM  4. Vortex partition and equivariant character  5. Relation to geometric indices  6. Summary 2011 年 4 月 27 日 7

8 Vortex equation (Bogomol’nyi equation) with G=U(N) 1.This equation preserves half of the supersymmetry. 2. On-shell action. Vortex number is defined by the first Chern number complexified FI-parameter

2011 年 4 月 27 日 9 Super YM theory with 8 SUSY (2-dim N =(4,4) SYM) The vector multiplet in N =(4,4) SYM consists of Hypermultiplets in N=(4,4) theory consists of matter content of N =(4,4) theory N =(2,2) vector multiplet N =(2,2) adjoint chiral multiplet N =(2,2) fundametnal chiral multiplet N =(2,2) anti-fundametnal chiral multiplet

2011 年 4 月 27 日 10 Vacuum (Higgs branch) r:FI-parameter Symmetry group of Vacuum Bosonic part of Lagrangian Global gauge group Flavor group twisted mass

2011 年 4 月 27 日 11 k -vortex moduli space in ( p+2 )-dim U(N) SYM with 8 SUSY by k D p - N D( p+2 ) brane construction(Hanany & Tong 2002) NS5 o o o o o o D2 o o o D0 o vortex partition function(zero mode theory) in N =(4,4) SYM from brane system

2011 年 4 月 27 日 12 D0-D0 D0-D2 I : orientational moduli B : translational moduli DRED of vector with gauge group DRED of adjoint chiral multiplet DRED of chiral malutiplet

2011 年 4 月 27 日 13 :k-vortex partition functions Chen and Tong (2006)  Mass deformation D-term condition The moduli space of k -vortexEto et al(2005) Hanany & Tong(2002) We consider mass deformation N =(4,4) theory. Taking large mass limit, we obtain N =(2,2) SYM with N chiral multiplets. Edalati & Tong (2007)

2011 年 4 月 27 日 14 DRED of 2d (0,2) chiral multipet DRED of 2d (0,2) fermi multipet In the presence of the mass term, vortex partition function is deformed multiplets decouple from the vortex theory heavy mass limit

2011 年 4 月 27 日 15  k -vortex partition function for N =(2,2) U(N) SYM with N -fundamental matter with This action is expressed in Q-exact form

2011 年 4 月 27 日 16 SUSY transformation generates the following vector field on Nekrasov (2002) Bruzzo et al (2002) Superdeterminant

2011 年 4 月 27 日 17 k -vortex parition function in G=U(N) N =(2,2) SYM N -flavor Vortex partition function in G=U(1) N =(2,2) SQED This agree with the result from the equivariant character

2011 年 4 月 27 日 18 We introduce the following torus action  Vortex moduli space

2011 年 4 月 27 日 19 At the fixed points, we can decompose the representation space as Gauge transformation Restriction map  Fixed point condition

2011 年 4 月 27 日 20 2d partition (Young diagram) 1d partition In the case of 4-dim instanton… In the case of 2-dim vortex

2011 年 4 月 27 日 21 character of each spaces Infinitesimal gauge transformation Tangent space of k -vortex moduli space

2011 年 4 月 27 日 22 equivariant character 3d vortex partition function Replacement

2011 年 4 月 27 日 23 -genus of complex manifold M Equivariant case The fixed points The weight at the point

2011 年 4 月 27 日 24 3d vortex partition function This corresponds to geometric genus This corresponds to Euler number N =(2,2) case N =(4,4) case

 We have obtained N =(2,2) vortex partition function from the mass deformation of N =(4,4) vortex partition function.  N =(2,2) vortex partition function can be written with Q-exact form ⇒ We can apply Localization formula ・ especially we reproduce abelian vortex from open BPS state counting or equivariant character of  Vortex parition function is expressed by 1d partition Cf) Nekrasov partition is expressed by 2d partition(Young diagram). 3d vortex partition is related to certain geometric indices of the k -vortex moduli space  Future direction Relation to integrable structure( KP hierarchy, spin chain), etc… 2011 年 4 月 27 日 25