MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §1.6 Exponent Properties
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §1.5 → (Word) Problem Solving Any QUESTIONS About HomeWork §1.5 → HW MTH 55
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 3 Bruce Mayer, PE Chabot College Mathematics Exponent PRODUCT Rule For any number a and any positive integers m and n, In other Words: To MULTIPLY powers with the same base, keep the base and ADD the exponents Exponent Base
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 4 Bruce Mayer, PE Chabot College Mathematics Quick Test of Product Rule Test
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 5 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Multiply and simplify each of the following. (Here “simplify” means express the product as one base to a power whenever possible.) a) x 3 x 5 b) 6 2 6 7 6 3 c) (x + y) 6 (x + y) 9 d) (w 3 z 4 )(w 3 z 7 )
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 6 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Solution a) x 3 x 5 = x 3+5 Adding exponents = x 8 Solution b) 6 2 6 7 6 3 = = 6 12 Solution c) (x + y) 6 (x + y) 9 = (x + y) 6+9 = (x + y) 15 Solution d) (w 3 z 4 )(w 3 z 7 ) = w 3 z 4 w 3 z 7 = w 3 w 3 z 4 z 7 = w 6 z 11 Base is x Base is 6 Base is (x + y) TWO Bases: w & z
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 7 Bruce Mayer, PE Chabot College Mathematics Exponent QUOTIENT Rule For any nonzero number a and any positive integers m & n for which m > n, In other Words: To DIVIDE powers with the same base, SUBTRACT the exponent of the denominator from the exponent of the numerator
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 8 Bruce Mayer, PE Chabot College Mathematics Quick Test of Quotient Rule Test
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 9 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Divide and simplify each of the following. (Here “simplify” means express the product as one base to a power whenever possible.) a)b) c)d)
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Solution a) Solution b) Solution c) Solution d) Base is x Base is 8 Base is (6y) TWO Bases: r & t
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 11 Bruce Mayer, PE Chabot College Mathematics The Exponent Zero For any number a where a ≠ 0 In other Words: Any nonzero number raised to the 0 power is 1 Remember the base can be ANY Number – , 19.19, −86, , anything
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 12 Bruce Mayer, PE Chabot College Mathematics Example The Exponent Zero Simplify: a) b) (−3) 0 c) (4w) 0 d) (−1)8 0 e) −8 0 Solutions a) = 1 b)(−3) 0 = 1 c)(4w) 0 = 1, for any w 0. d)(−1)8 0 = (−1)1 = −1 e)−8 0 is read “the opposite of 8 0 ” and is equivalent to (−1)8 0 : −8 0 = (−1)8 0 = (−1)1 = −1
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 13 Bruce Mayer, PE Chabot College Mathematics The POWER Rule For any number a and any whole numbers m and n In other Words: To RAISE a POWER to a POWER, MULTIPLY the exponents and leave the base unchanged
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 14 Bruce Mayer, PE Chabot College Mathematics Quick Test of Power Rule Test
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 15 Bruce Mayer, PE Chabot College Mathematics Example Power Rule Simplify: a) (x 3 ) 4 b) (4 2 ) 8 Solution a) (x 3 ) 4 = x 3 4 = x 12 Solution b) (4 2 ) 8 = 4 2 8 = 4 16 Base is x Base is 4
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 16 Bruce Mayer, PE Chabot College Mathematics Raising a Product to a Power For any numbers a and b and any whole number n, In other Words: To RAISE A PRODUCT to a POWER, RAISE Each Factor to that POWER
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 17 Bruce Mayer, PE Chabot College Mathematics Quick Test of Product to Power Test
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 18 Bruce Mayer, PE Chabot College Mathematics Example Product to Power Simplify: a) (3x) 4 b) (−2x 3 ) 2 c) (a 2 b 3 ) 7 (a 4 b 5 ) Solutions a)(3x) 4 = 3 4 x 4 = 81x 4 b)(−2x 3 ) 2 = (−2) 2 (x 3 ) 2 = (−1) 2 (2) 2 (x 3 ) 2 = 4x 6 c)(a 2 b 3 ) 7 (a 4 b 5 ) = (a 2 ) 7 (b 3 ) 7 a 4 b 5 = a 14 b 21 a 4 b 5 Multiplying exponents = a 18 b 26 Adding exponents
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 19 Bruce Mayer, PE Chabot College Mathematics Raising a Quotient to a Power For any real numbers a and b, b ≠ 0, and any whole number n In other Words: To Raise a Quotient to a power, raise BOTH the numerator & denominator to the power
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 20 Bruce Mayer, PE Chabot College Mathematics Quick Test of Quotient to Power Test
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 21 Bruce Mayer, PE Chabot College Mathematics Example Quotient to a Power Simplify: a) b) c) Solution a) Solution b) Solution c)
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 22 Bruce Mayer, PE Chabot College Mathematics Negative Exponents Integers as Negative Exponents
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 23 Bruce Mayer, PE Chabot College Mathematics Negative Exponents For any real number a that is nonzero and any integer n The numbers a −n and a n are thus RECIPROCALS of each other
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 24 Bruce Mayer, PE Chabot College Mathematics Example Negative Exponents Express using POSITIVE exponents, and, if possible, simplify. a) m –5 b) 5 –2 c) (−4) −2 d) xy –1 SOLUTION a) m –5 = b) 5 –2 =
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 25 Bruce Mayer, PE Chabot College Mathematics Example Negative Exponents Express using POSITIVE exponents, and, if possible, simplify. a) m –5 b) 5 –2 c) (−4) −2 d) xy −1 SOLUTION c) (−4) −2 = d) xy –1 = Remember PEMDAS
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 26 Bruce Mayer, PE Chabot College Mathematics More Examples Simplify. Do NOT use NEGATIVE exponents in the answer. a) b) (x 4 ) 3 c) (3a 2 b 4 ) 3 d)e) f) Solution a)
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 27 Bruce Mayer, PE Chabot College Mathematics More Examples Solution b) (x −4 ) −3 = x (−4)(−3) = x 12 c) (3a 2 b −4 ) 3 = 3 3 (a 2 ) 3 (b −4 ) 3 = 27 a 6 b −12 = d) e) f)
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 28 Bruce Mayer, PE Chabot College Mathematics Factors & Negative Exponents For any nonzero real numbers a and b and any integers m and n A factor can be moved to the other side of the fraction bar if the sign of the exponent is changed
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 29 Bruce Mayer, PE Chabot College Mathematics Examples Flippers Simplify SOLUTION We can move the negative factors to the other side of the fraction bar if we change the sign of each exponent.
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 30 Bruce Mayer, PE Chabot College Mathematics Reciprocals & Negative Exponents For any nonzero real numbers a and b and any integer n Any base to a power is equal to the reciprocal of the base raised to the opposite power
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 31 Bruce Mayer, PE Chabot College Mathematics Examples Flippers Simplify SOLUTION
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 32 Bruce Mayer, PE Chabot College Mathematics Summary – Exponent Properties 1 as an exponenta 1 = a 0 as an exponenta 0 = 1 Negative Exponents (flippers) The Product Rule The Quotient Rule The Power Rule(a m ) n = a mn The Product to a Power Rule (ab) n = a n b n The Quotient to a Power Rule This summary assumes that no denominators are 0 and that is not considered. For any integers m and n
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 33 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §1.6 Exercise Set 14, 24, 52, 70, 84, 92, 112, 130 Base & Exponent → Which is Which?
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 34 Bruce Mayer, PE Chabot College Mathematics All Done for Today Astronomical Unit (AU)
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 35 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –