Subthreshold K + production and the nuclear equation-of-state Christian Sturm Johann Wolfgang Goethe-Universität Frankfurt NUCLEAR MATTER IN HIGH DENSITY.

Slides:



Advertisements
Similar presentations
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Advertisements

Marcus Bleicher, ISMD 2005 Elliptic and Radial Flow in High Energetic Nuclear Collisions Marcus Bleicher (& Xianglei Zhu) Institut für Theoretische Physik.
Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
The Physics of Dense Nuclear Matter
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
STAR Patricia Fachini 1 Brookhaven National Laboratory Motivation Data Analysis Results Conclusions Resonance Production in Au+Au and p+p Collisions at.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
The nuclear equation of state is soft C. Hartnack and J. Aichelin Subatech/University of Nantes H. Oeschler Technical University of Darmstadt SQM, march.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Resonance Dynamics in Heavy Ion Collisions 22nd Winter Workshop on Nuclear Dynamics , La Jolla, California Sascha Vogel, Marcus Bleicher UrQMD.
Motivations Results on Σ(1385) with FOPI detector Results on Λp correlation Conclusions / Outlook Towards strange multi-baryonic clusters, measurement.
DPG spring meeting, Tübingen, March Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Recent results from STAR at RHIC.
Marcus Bleicher, CCAST- Workshop 2004 Strangeness Dynamics and Transverse Pressure in HIC Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
Constraining the EoS and Symmetry Energy from HI collisions Statement of the problem Demonstration: symmetric matter EOS Laboratory constraints on the.
What transport theories do Problems with the input of transport Hades dilepton data - can transport reproduce the HI data? - does a medium modify the spectra?
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Convenors: Elena Bratkovskaya*, Christian Fuchs, Burkhard Kämpfer *FIAS, J.W. Goethe Universität, Frankfurt am Main , CBM Workshop „ The Physics.
Collective Flow in Heavy-Ion Collisions Kirill Filimonov (LBNL)
Pornrad Srisawad Department of Physics, Naresuan University, Thailand Yu-Ming Zheng China Institute of Atomic Energy, Beijing China Azimuthal distributions.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Countrate estimates. Particle production in heavy ion collisions.
1 Study Of Collective Flow Phenomena In High Energy Nucleus-Nucleus Collisions L.Chkhaidze, T.Djobava, L.Kharkhelauri Institute of High Energy Physics.
Shanghai Elliptic flow in intermediate energy HIC and n-n effective interaction and in-medium cross sections Zhuxia Li China Institute of Atomic.
Nuclear Reactions - II A. Nucleon-Nucleus Reactions A.1 Spallation
Di-electron measurements with HADES at SIS100 Motivation Motivation HADES di-electron results (SIS 18) - summary HADES di-electron results (SIS 18) - summary.
Roy A. Lacey (SUNY Stony Brook ) C ompressed B aryonic at the AGS: A Review !! C ompressed B aryonic M atter at the AGS: A Review !!
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Strangeness Balance in Heavy-ion Collisions Evgeni E. Kolomeitsev (University of Matej Bel, Slovakia) work in collaboration with B.Tomasik and D.N. Voskresensky.
HADES versus DLS: no puzzle anymore ! Elena Bratkovskaya , Workshop ‚Bremsstrahlung in dilepton production‘ GSI, Darmstadt.
Unified description of nuclear stopping in central heavy-ion collisions from 10A MeV to 1.2A GeV Yu-Gang Ma Shanghai INstitute of Applied Physics, Chinese.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Electromagnetic and strong probes of compressed baryonic matter at SIS100 energies Elena Bratkovskaya Institut für Theoretische Physik, Uni. Frankfurt.
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
Nucleon-Nucleon collisions. Nucleon-nucleon interaction at low energy Interaction between two nucleons: basic for all of nuclear physics Traditional goal.
Overview of Relativistic Heavy-Ion Collisions at SIS Energies
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
Compressed baryonic matter - Experiments at GSI and at FAIR Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
Helmut Oeschler Darmstadt University of Technology Strangeness Production at 1 -2 AGeV Erice, September 2008.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Spectator response to the participant blast in the reaction 197 Au+ 197 Au at 1 A GeV – results of the first dedicated experiment V. Henzl for CHARMS collaboration.
Helmut Oeschler Darmstadt University of Technology Transition from Baryonic to Mesonic Freeze Out SQM2006, March 28 th, 2006.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Motivations - HADES C+C 1 AGeV, 2 AGeV - measured excess: beam energy dependence p+p, d+p 1.25 (A)GeV - Studies of NN-Bremsstrahlung and  Dalitz decay.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
Al+Au Analysis Plan Why study asymmetric systems like Al+Au (or Cu+Au as was recently done at RHIC)? Collisions of symmetric heavy ions do not create a.
1 Strange Resonance Production in p+p and Au+Au Collisions at RHIC energies. Christina Markert, Yale University for the STAR Collaboration QM2004,
Properties of nuclear matter from subtheshold strangeness production Christoph Hartnack, Helmut Oeschler, Jörg Aichelin Subatech Nantes and TH Darmstadt.
Dynamics of Nucleus-Nucleus Collisions at CBM energies Frankfurt Institute for Advanced Studies Elena Bratkovskaya , CBM Workshop „ The Physics.
Transverse and elliptic flows and stopping
CBM and the nuclear matter EOS
HADES The Baryon-rich Side of the Phase Diagram
Institute of Modern Physics, CAS
In-medium properties of the omega meson from a measurement of
A simulation study of fluctuation effect on harmonic flow
Craig Ogilvie, Jan 2001 Properties of dense hadronic matter
Production of Multi-Strange Hyperons at FAIR Energies.
New Strangeness Results from HADES
Nuclear Stopping and Nuclear Equation of State
Presentation transcript:

Subthreshold K + production and the nuclear equation-of-state Christian Sturm Johann Wolfgang Goethe-Universität Frankfurt NUCLEAR MATTER IN HIGH DENSITY Hirschegg 2009

2 / 33Christian SturmHirschegg 2009 The compression modulus of nuclear matter at saturation density ρ 0 : Excitation of the giant monopole resonance 90 Zr α α inelastic scattering of α particles on nuclei measure of the total energy of the outgoing α particle → E x E kin = 240 MeV From the measured excitation energy distribution E x : → frequency → restoring force (potential) of the oscillation → "spring constant" κ = compression modulus The energy loss of the α particle of about 15 – 25 MeV excites slight density oscillations with elongations of about 1/100 ρ 0 (around saturation density ρ 0 ). It is a collective excitation of the nucleus and calls the Giant Monopole Resonance or the "breathing mode" of nuclei. "resonance phenomenon" Youngblood et al., Phys. Rev. Lett. 82 (1999)691

3 / 33Christian SturmHirschegg 2009 The compression modulus of nuclear matter at saturation density ρ 0 : Excitation of the giant monopole resonance "Excitation of the Giant Monopole Resonance by inelastic scattering of α particles on nuclei" Youngblood et al., Phys. Rev. Lett. 82 (1999)691 κ = 231 ± 5 MeV

4 / 33Christian SturmHirschegg 2009 high density phase Au + QMD, S. Bass, Uni. Frankfurt transport models: ρ max ≅ 3ρ 0 ≈ s t resonances nucleons mesons high density and temperature on a very short time scale thermodynamical equilibrium not necessarily achieved To investigate high baryon densities in the laboratory : Relativistic Heavy Ion Collisions 1.5 GeV/nucleon

5 / 33Christian SturmHirschegg 2009 Au +Au 1.5 AGeV UrQMD

6 / 33Christian SturmHirschegg 2009 The case of moderate beam energies t [fm/c] ≈ 10 fm/c Particle production at or below threshold : – co-operative processes (i.e. multi step processes) – production confined to the high density phase ! Enhancement of baryon density :  (   > 2) ≈ 10 fm/c → comparatively long life-time at moderate densities ! NN → NΔ πNπN πN → K + Λ multi step processes: i.e.

7 / 33Christian SturmHirschegg 2009 FOPI: Light vector mesons at SIS18: Dilepton spectroscopy with HADES

8 / 33Christian SturmHirschegg 2009 The Kaonspectrometer dedicated to identify rare Kaon events Kaons are rare at these energy regime:

9 / 33Christian SturmHirschegg 2009 Subthreshold K + production in nucleus-nucleus collisions and the equation-of-state of symmetric nuclear matter Why are Kaons at SIS energies well suited to probe the nuclear equation-of-state ? brief survey Important for transport models: what are the experimental findings according the in-medium properties of Kaons ? What is the conclusion of the subthreshold K + production in comparison with transport model calculations ? Could we identify a robust observable ?

10 / 33Christian SturmHirschegg 2009 Associated production of strange mesons in elementary nucleon-nucleon reactions uduudu uduudu n p uddudd susu K+K+ susu p KK dduddu n udsuds n p uddudd susu  K+K+ dduddu n uduudu production threshold in NN collisions : Kaons production threshold in NN collisions : Antikaons

11 / 33Christian SturmHirschegg 2009 Additional channels in nucleus-nucleus collisions e.g. (Y=Λ,Σ) multi step processes ! M: multiplicity = number / per collision central collisions peripheral A part : number of participating nucleons “Subthreshold” K + production Au + Au 1 GeV / nucleon : Kaons are predominantly produced during the high density phase of the collision!

12 / 33Christian SturmHirschegg 2009 Final state interaction mean free path at ρ 0 : K + no absorption only elastic scattering

13 / 33Christian SturmHirschegg 2009 In-medium modification of Kaons and Antikaons in dense nuclear matter G.E Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34 J. Schaffner-Bielich, J. Bondorf, I. Mishustin, Nucl. Phys. A 625 (1997)  (1405) K-K- K-K- N -1 self-consistent coupled channel calculation with mean field (s,p,d waves)

14 / 33Christian SturmHirschegg 2009 In-medium modification of Kaons and Antikaons repulsive K + N potential attractive K - N potential (envelope of several microscopic calculations: all predict the same trend !) This should effect: production → yield propagation → angular distributions

15 / 33Christian SturmHirschegg 2009 In-medium modifications of K + mesons Data: M. Menzel et al., (KaoS Collab.), Phys. Lett. B 495 (2000) 26 K. Wisniewski et al., ( FOPI Collab.), Eur. Phys. J A 9 (2000) 515 Reduced K + yield due to increased in-medium K + mass

16 / 33Christian SturmHirschegg 2009 Data: Y. Shin et al., (KaoS Collaboration), Phys. Rev. Lett. 81 (1998) 1576 F. Uhlig et al., (KaoS Collaboration), Phys. Rev. Lett. 95 (2005) Calculations see A. Larionov, U. Mosel, nucl-th/ Evidence for a repulsive K + N interaction ! K + azimuthal emission pattern from A+A collisions

17 / 33Christian SturmHirschegg 2009 K 0 production in Ar + KCl reactions invariant mass : Ar + KCl GeV / nucleon 50% K 0 S, 50% K 0 L 69%, cτ ≈ 2.7 cm 68%, cτ ≈ 15.5 m

18 / 33Christian SturmHirschegg 2009 K 0 production in Ar + KCl reactions repulsive Kaon-Nucleon Potential : IQMD calculation by C. Hartnack, J. Aichelin Ar + KCl GeV / nucleon transverse mass

19 / 33Christian SturmHirschegg 2009 p + C  K + + X (1.6, 2.5, 3.5 GeV) p + C  K - + X (2.5, 3.5 GeV) p + Au  K + + X (1.6, 2.5, 3.5 GeV) p + Au  K - + X (2.5, 3.5 GeV) Strangeness production in proton - nucleus collisions W. Scheinast et al., (KaoS Collaboration) Phys. Rev. Lett. 96 (2006) Search for in-medium effects at saturation density !

20 / 33Christian SturmHirschegg 2009 Transport calculation: H. W. Barz et al., Phys.Rev. C68 (2003) contributing channels: p + N → K + +  p + N → N + N + K + + K -  + N  N + N + K - Kaon and Antikaon in-medium potentials at ρ 0 ratio: In-medium KN potentials used:

21 / 33Christian SturmHirschegg 2009 M. Płoskon, PhD Thesis 2005 K + and K - azimuthal angular distributions in Au + Au collisions 1.5 GeV / nucleon semi-central collisions (b > 6.4 fm) fit:

22 / 33Christian SturmHirschegg 2009 Elliptic flow of K + and K - mesons: Comparison to off-shell transport calculations and in-medium spectral functions Data: M. Płoskon, PhD Thesis, Univ. Frankfurt 2005 Off-shell transport calculations: W. Cassing et al., NPA 727 (2003) 59, E. Bratkovskaya, priv. com. Coupled channel G-Matrix approach (K - spectral functions): L. Tolos et al., NPA 690 (2001) 547 not yet conclusive !

23 / 33Christian SturmHirschegg 2009 Conclusion In-medium modification of Kaons and Antikaons Yield and elliptic flow of Kaons in A+A collisions:  The in-medium Kaon-Nucleon potential is repulsive Yield of Kaons and Antikaons in proton-nucleus collisions:  in-medium K - N potential V K - N = - 80  20  /  0 MeV  in-medium K + N potential V K + N = 25  5  /  0 MeV Yield and elliptic flow of Antikaons in A+A collisions:  Quantitative interpretation of data requires off-shell transport calculations (dealing with spectral functions !)

24 / 33Christian SturmHirschegg 2009 nuclear equation-of-state at T = 0 : " compressional" energy effective NN-Potential (Skyrme) stiff EoS soft EoS Compression Modulus : 7/ κ = 200 MeV κ = 380 MeV γβ [MeV] α [MeV] The equation-of-state of (symmetric) nuclear matter

25 / 33Christian SturmHirschegg 2009 "Subthreshold" K + production linked to the nuclear equation-of-state “Subthreshold” K + mesons predominantly produced by collective effects → multi step processes (Y=Λ,Σ) production threshold: E lab = 1.58 GeV e.g. Probability of multi step processes increases nonlinearly with the baryon density soft EoS ρ max / ρ 0 ≅ 3.1 stiff EoS ρ max / ρ 0 ≅ 2.7 IQMD: Au+Au 1AGeV

26 / 33Christian SturmHirschegg 2009 What could be a sensitive observable ? Idea: measure K + production in Au+Au and C+C collisions ! IQMD C. Hartnack The light collision system serves as a “reference” system because there is almost no compression expected !

27 / 33Christian SturmHirschegg 2009 K + production in Au+Au and C+C collisions

28 / 33Christian SturmHirschegg 2009 Production excitation functions in Au+Au and C+C collisions enhanced K + production in Au+Au reactions C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39

29 / 33Christian SturmHirschegg 2009 The compression modulus of nuclear matter at ρ = ρ 0 Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 soft nuclear equation-of-state: κ ≈ 200 MeV Theory: RQMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974

30 / 33Christian SturmHirschegg 2009 The compression modulus of nuclear matter at ρ = ρ 0 Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Theory: RQMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD C. Hartnack, J. Aichelin

31 / 33Christian SturmHirschegg 2009 Robust observable ? Variation of: cross sections in-medium KN potentials Δ lifetime conclusion: calculations using a potential according to a “soft” nuclear equation-of-state describe the data at best ! IQMD C. Hartnack, J. Aichelin IQMD

32 / 33Christian SturmHirschegg 2009 The equation-of-state of (symmetric) nuclear matter C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1

33 / 33Christian SturmHirschegg 2009 Conclusion Nuclear equation-of-state ρ ≈ 2–3 ρ 0 Double ratio of the K + production excitation functions in Au+Au and C+C  Robust observable  The nuclear matter equation-of-state is soft ( K  200 MeV) ρ ≈ 1 ρ 0 Excitation of the giant monopole resonance in inelastic α-nucleus collisions  The compression modulus of nuclear matter K = 231± 5 MeV

34 / 33Christian SturmHirschegg 2009 additional slides...

35 / 33Christian SturmHirschegg 2009 dN/d  1 + 2v 1  cos  + 2v 2 cos2  P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592 Probing the nuclear equation-of-state: proton collective flow Transverse in-plane flow:Elliptic flow: F = d(p x /A)/d(y/y cm )

36 / 33Christian SturmHirschegg 2009 K+K+ 32 o 40 o 48 o 60 o 71 o Θ lab = Acceptances Au+Au 1.5GeV

37 / 33Christian SturmHirschegg 2009 K+K+ 32 o 40 o 48 o 60 o 71 o Θ lab = The Kaon Spectrometer  compact size: path length 5 – 7.5 m  Kaon Trigger (ToF + Cherenkov)  efficient background reduction by 2xToF measurement   = 15 – 35 msr   p/p  2   lab : 0  – 115  ToF-2ToF-1

38 / 33Christian SturmHirschegg 2009 Spectral distributions from A+A (Θ cm ≈90 º ) (w/o selection of impact parameter) fit:

39 / 33Christian SturmHirschegg 2009 Spectral distributions as a function of the centrality A. Förster et al. PRL 91(2003) F.Uhlig PhD Thesis,TU Darmstadt Au+Au, 1.5AGeV Ni+Ni, 1.93AGeV  5% σ r  15% σ r  15% σ r 25% σ r  40% σ r central peripheral

40 / 33Christian SturmHirschegg 2009 Spectral distributions as a function of the centrality  5% σ r  15% σ r  15% σ r 25% σ r  40% σ r central peripheral Au+Au, 1.5AGeV 1.5AGeV

41 / 33Christian SturmHirschegg 2009 Spectral distributions of Pions Au + Au, 1.5AGeV

42 / 33Christian SturmHirschegg 2009 Azimuthal particle emission out off plane emission semi central collisions p,d,t,α Fourier expansion of the dN/d ϕ distribution: mid rapidity the coefficients quantify : v 1 the in-plane and v 2 the elliptic emission pattern

43 / 33Christian SturmHirschegg 2009 Directed flow of protons and fragments and the nuclear equation-of-state Au + Au, 400 AMeV, M4 transport calculation (IQMD) by C. Hartnack A. Andronic et. al. Phys. Rev. C 67 (2003) best description of Au and Xe data at 400AMeVwith a soft EoS + MDI Fourier coefficient v 1 : directed flow (in-plane)

44 / 33Christian SturmHirschegg 2009 semi central collisions Azimuthal particle emission π+π+ Bi+Bi 0.7AGeV, semi central D. Brill et al. ZPA355 (1996) 61 ZPA357 (1997) 207 Pions are enhanced emitted perpendicular to the reaction plane. What would you expect how the K + emission pattern look like ? out-of-plane

45 / 33Christian SturmHirschegg 2009 K + sideward flow K+K+ p reaction plane top view RBUU: E. Bratkovskaya, W. Cassing P. Crochet et al., Phys. Lett. B 486 (2000) 6 K + -Mesons show an “antiflow" – caused by a repulsive K + N potential -1.2  y 0  - 0.5

46 / 33Christian SturmHirschegg 2009 The in-medium spectral function of Antikaons  (1405) K-K- K-K- N -1 Coupled channels calculation M. Lutz GSI resonant state close to the K - N threshold: Λ(1405)

47 / 33Christian SturmHirschegg 2009 K + and K - production in p+p and A+A collisions F. Laue, C. Sturm et al. PRL 82 (1999) 1640 M. Menzel et al. PLB 495 (2000) 26 dropping K - mass ? F. Laue, C. Sturm et al. PRL 82 (1999) 1640 M. Menzel et al. PLB 495 (2000) 26 Parameterizations: A. Sibirtsev, W. Cassing, C.M. Ko, ZPA 258 (1997) 101 K - / K + ≪ 1

48 / 33Christian SturmHirschegg 2009 soft EoS stiff EoS Nb + Nb, 0.7 AGeV ρ/ρ0ρ/ρ0 PKPK t [fm/c]