Subaru GLAO Simulation

Slides:



Advertisements
Similar presentations
Geminis Future AO Program A Decade of AO Evolution at Gemini Recent AO Program Highlights Doug Simons Gemini Observatory.
Advertisements

Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Page 1 Lecture 17 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 UC Santa Cruz March 7, 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Thermal Infrared Observation using Adaptive Secondary Mirror (ASM) Hiroshi TERADA (Subaru Telescope)  Ground-based Thermal IR w/AO  Subaru Thermal IR.
AO188/LGS status AO188 development group(Subaru Telescope, NAOJ) (JST)
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
Widening the Scope of Adaptive Optics Matthew Britton.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
A Short Presentation of Ongoing AO Work at Lund Observatory Mette Owner-Petersen Lund Observatory Workshop for “Forskarskolen i Rymdteknik” Gothenburg.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
W. M. Keck Observatory’s Next Generation Adaptive Optics (NGAO) Facility Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max for NGAO Team:
What Requirements Drive NGAO Cost? Richard Dekany NGAO Team Meeting September 11-12, 2008.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
Adaptive Optics in the VLT and ELT era Beyond Basic AO
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
GLAO simulations at ESO European Southern Observatory
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
1 Manal Chebbo, Alastair Basden, Richard Myers, Nazim Bharmal, Tim Morris, Thierry Fusco, Jean-Francois Sauvage Fast E2E simulation tools and calibration.
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
February 2013 Ground Layer Adaptive Optics (GLAO) Experiment on Mauna Kea Doug Toomey.
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Strehl Ratio estimation. SR from H band images High Strehl PSF ->fitting with Zernike modes We suppose: No relevant loss of energy due to high modes (Z>36)
AO188/LGS Status and Schedule 1 Yutaka Hayano January 31, 2008.
Status report of AO188+LGS (+future AO) Yutaka Hayano (Subaru Telescope, NAOJ) S. Oya, M. Hattori, Y. Saito, Y. Minowa, M. Ito, H. Terada, T.S. Pyo, H.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
Vancouver, June Models of the ground layer and free atmosphere at some sites A. Tokovinin, CTIO Need for OTP “models”: Adaptive Optics!
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Introduction of RAVEN Internal meeting on future instrument projects at Subaru Shin Oya ( Subaru Telescope/NAOJ) ‏ Hilo.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
Wide-field wavefront sensing in Solar Adaptive Optics - its modeling and its effects on reconstruction Clémentine Béchet, Michel Tallon, Iciar Montilla,
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
GLAO Workshop Leiden April 2005 Remko Stuik Leiden Observatory.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Page 1 Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016.
Pyramid sensors for AO and co-phasing
MASS-DIMM and SODAR at Cerro Pachon
MASS-DIMM – a turbulence monitor for Adaptive Optics
Trade Study Report: Fixed vs. Variable LGS Asterism
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

Subaru GLAO Simulation Shin Oya (Subaru Telescope) 2012/10/16 @ Hilo

Outline What is Ground Layer Adaptive Optics (GLAO)? a type of wide-field AO Mauna Kea seeing (which determines GLAO performance) Simulation to evaluate performance Seeing model, configuration Correction wavefront error (WFE) profile (moffat FWHM; ensquared energy) wavelength dependency, zenith angle dependency Field-of-View mechanical limit: Cs 8.6’φ ⇒ 20’ φ w/o ADC (cf. Ns 4’φ) constraint from performance? Adaptive Secondary Mirror (ASM) application

What is GLAO? Wide-field AO (incl. GLAO) needs Considering 3D structure of atmospheric turbulence Multiple guide stars Tomography GLAO correction

Mauna Kea seeing: overall profile Free atmosphere turbulence: weak Ground layer turbulence: strong suitable for GLAO altitude: log 10km Mauna Kea (long dashed line) MASS-DIM 1km Ground layer 250m = (0m+500m)/2 TMT 13N Els+09, PASP,121,527 strength: linear 30x10^-14 m^(1/3)

Mauna Kea Seeing: ground layer Concentrated close to the surface suitable for GLAO Summit ridge (~70 m above Subaru) Chun+09,MNRAS,394,1121 - SLODAR(~2yr) - LORAS(~1yr) TMT site (~90m below Subaru) Els+09, PASP,121,527 - MASS-DIMM (~2yr) - SODAR (~2yr) 1" SODAR 200m ground layer < 80m ground layer < 100m

Seeing measurement plan at Subaru Local ground-layer at Subaru? - 70m below and leeward of the ridge (laminar flow?) - fine resolution data for more detailed simulation Grant-in-Aid (Houga) from this FY Luna Shabar (PTP) by Univ.BC optical: 1 ~ 1000m SNODAR by Univ. NSW acoustic: 10 ~ 100m

Fractional Layer Strength RAVEN seeing model D. Andersen+2012,PASP,124,469 - based on TMT site testing profile at 13N (Els+09,PASP,121,527) - IQ statistics difference between 13N profile and Subaru is attributed to ground layer fwhm 0.53" 0.66" 0.85" seeing percentile Fractional Layer Strength increased to match Subaru IQ statistics TMT site testing profile ratio

Subaru GLAO configuration tentative r = 5 arcmin 7.5 arcmin 10 arcmin DM: 32 act. Across @ -80m RAVEN seeing: good: 0.52” moderate: 0.65” bad: 0.84” 1 reconstruction layer (0m) ★: HoGS +: TTF-GS (50" inside of LGS) ■: PSF eval.(toward GS) ▲: (between GS) *: DM fitting

Seeing dependence of WFE difference by FoV size (color) is small seeing bad (0.84") moderate (0.65") good (0.52") tip/tilt ~ higher order (half & half contribution) FOV: blue:φ=10arcmin、green: φ=15arcmin、red:φ=20arcmin WFE order: ○: all order、☆: tip/tilt removed = higher order Seeing: ×

Seeing dependence of FWHM FOV: blue:φ=10arcmin、green:φ=15arcmin、red:φ=20arcmin GLAO: ○、 Seeing:×

Seeing vs FWHM ratio (GLAO/seeing) the better seeing is, the more effective GLAO correction is. FOV: blue:φ=10arcmin、green:φ=15arcmin、red:φ=20arcmin

Seeing vs EsqE ratio (GLAO/Seeing) width: blue: 0.24"、green: 0.36"、red: 0.48" FoV: 15' f

Zenith angle dependence of FWHM effective turbulence height increases Preliminary! theoretical @ ZA<30 moderate seeing FoV: 15' f width: red solid-line: GLAO (center)、blue dashed-line: Seeing black dotted-line: theoretical (seeing)

Comments on the noise Seeing: s2total = s2atmFA + s2atmGL GLAO: s2WFE = s2atmFA + (s2sense+ s2fit+ s2delay+ s2etc) WFE (sWFE) increase limit mag (ssensor): 8% by R=18 (TTF, 10mag LGS), RN limit HoWFS order (sfit): ~0% by 8x8 R=15 ⇔ 32x32 R=13 frame rate (sdelay): 8% by 200Hz ⇒ 50Hz (gain=0.5) FA: free atmosphere GL: ground layer uncorrected (dominant) seeing determines performance corrected (residual of AO system error) performance little change if seach < satmFA

Bright NGS vs Typical LGS typical case: moderate seeing (0.66"), FoV 15'f WFE [nm]: Tot: 1274±325, TT: 955±395, Ho: 802±129 NGS sensor noise free (R=10) WFE [nm]: Tot: 737±95, TT: 515±122, Ho: 519±47 LGS R=10, NGS(TTF) R=18mag WFE [nm]: Tot: 783±127, TT: 578±161, Ho: 517±47 WFS parameters: SH, 200Hz, gain=0.3, RN=0.1e-, 512x512pix

Possible observation modes by ASM 1. GLAO @ Cs seeing improvement over wide FoV 2. On-Source Single NGS @ Cs, Ns high SR for bright on-source NGS reduction of thermal background at l > 2mm 3. Single Conjugate Laser Tomography (SCLT) @ Cs,Ns better SR than on-source single LGS as close to on-source single NGS as possible Multi-Conjugate Laser Tomography (MCLT)? to increase FoV > 1 arcmin

14. On-source bright NGS ASM NGS (R~8mag) NGS188 LGS188 GLAO - LGS (Reff~10mag) - TTFGS (R ~ 18mag) FoV: 15' f Seeing @ 0.5mm: good (0.52")、moderate (0.62")、bad (0.84") System: solid: ASM、dashed: GLAO 、LGSAO188: GLAO

Summary GLAO: Ground Layer Adaptive Optics a wide-field AO correcting ground-layer turbulence only Mauna Kea seeing is suitable for GLAO Expected performance of GLAO by MAOS simulation Seeing model: TMT (13N) + GL to match Subaru IQ statistics Parameters: 32 elem, 4GS (NGS or LGS+TTF), 200Hz, 0.1e-RN Correction FOV: 15' Φ, FWHM < 0.2" @ K-band: 50%ile;0.65"@0.5mm Field-of-View mechanical vignetting by the telescope & optical design of the instrument limit FoV (not GLAO performance) Other possible observation modes by ASM On-source bright NGS FOV: 1' Φ, SR ~ 0.9 @ K-band : 50%ile;0.65"@0.5mm Laser tomography single conjugate (ASM only), multi conjugate (in future?)

Appendix

AO types Wide field AO (Subaru ngAO) LGSAO188 finer correction (increasing the number of elements) Wide field AO (Subaru ngAO) HiCIAO/SCExAO RAVEN LGSAO188 more layer correction (increasing the number of DM & WFS)

世界のAOの分布 Standard ... NGAO(Keck'15) GPI(GS'13) GALACSI(VLT'14) SPHERE(VLT'11) PFI(TMT) EPICS(EELT) NGAO(Keck'15) GALACSI(VLT'14) ATLAS(EELT) LTAO(GMT) 濃色:8m以下 淡色:30m級 MAD(VLT) GeMS(GS) NFIRAOS(TMT) MAORY(EELT) GRAAL(VLT'14) D2ndM(MMT, LBT) IMAKA(CFHT'16) D4thM (EELT) D2ndM(GMT) CONDOR(VLT'16) IRMOS(TMT) EAGLE(EELT) Standard ...

Comparison of simulation codes MAOS

広視野AO: MCAO FoV: 2 arcmin diffraction-limited survey possible multiple layers & multiple correctors conjugated RTC multiple WFSs wide-field instrument

広視野: GLAO FoV: 10 arcmin fwhm: < 0.4 [arcsec] survey possible ground-layer correction only single corrector (deformable 2ndry) WFS(s) wide-field instrument

広視野AO: MOAO FoR: 3 arcmin FoV: a few arcsec diffraction-limited targeted only each object direction multiple WFSs open loop each DM IFU spectrographs

LGSコーン効果の低減: LTAO

3. Seeing simulation (1) MAOS calculation reproduces seeing @ 0.5 mm, if FWHM is scaled by 1.22 (2) λ dependence seeing ∝ λ^-0.2 fitting: -0.3 ~ -0.4 i.e., under estimate at longer wavelength RAVEN is used for Subaru simulation red: RAVEN: good(dashed; r0 ○), moderate(solid; r0 □), bad(dotted; r0 ×) blue: Gemini: low gray-zone(solid), mid gz(dashed), high gz(dotted); r0 □ green: IMAKA: moderate(solid); r0 □

8. Seeing WFE vs WFE ratio (GLAO/Seeing) difference by FoV size (color) is small FOV: blue:φ=10arcmin、green: φ=15arcmin、red:φ=20arcmin Order: ○: all order、☆: piston/tip/tilt removed = higher order

7. Seeing dependence of EsqE width: blue: 0.24"、green: 0.36"、red: 0.48" GLAO: ○、Seeing: FoV: 15' f

11. Field dependence of WFE Good seeing (0.52") Moderate seeing (0.62") Bad seeing (0.84") 1500nm 0nm 1 1 1 normalized radius FoV: blue: 10' φ 、green: 15' φ 、red: 20'φ direction: □: toward GS、△: between GS GLAO: solid lines、seeing (uncorrected): dotted lines

12. Dependence on the system order FoV:15' f moderate seeing At shorter wavelength, lower order system performance is worse. The system order will be determined by LGS brightness and WFS noise. red: 32 act. across DM (& WFS)、blue: 10 act. across DM (& WFS) Note that the result for the combination of high-order DM (32 act. across) and low-order WFS (10 act. across) is the same as 10 act. across DM (&WFS).