Learning with Decision Trees Artificial Intelligence CMSC 25000 February 18, 2003.

Slides:



Advertisements
Similar presentations
Introduction to Artificial Intelligence CS440/ECE448 Lecture 21
Advertisements

CPSC 502, Lecture 15Slide 1 Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 15 Nov, 1, 2011 Slide credit: C. Conati, S.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Evolutionary Computing Systems Lab (ECSL), University of Nevada, Reno 1.
Data Mining Classification: Alternative Techniques
Data Mining Classification: Alternative Techniques
Machine Learning Decision Trees. Exercise Solutions.
Decision Tree Learning 主講人:虞台文 大同大學資工所 智慧型多媒體研究室.
Machine learning learning... a fundamental aspect of intelligent systems – not just a short-cut to kn acquisition / complex behaviour.
Information Extraction Lecture 6 – Decision Trees (Basic Machine Learning) CIS, LMU München Winter Semester Dr. Alexander Fraser, CIS.
Decision Trees IDHairHeightWeightLotionResult SarahBlondeAverageLightNoSunburn DanaBlondeTallAverageYesnone AlexBrownTallAverageYesNone AnnieBlondeShortAverageNoSunburn.
Lecture outline Classification Decision-tree classification.
1 Chapter 10 Introduction to Machine Learning. 2 Chapter 10 Contents (1) l Training l Rote Learning l Concept Learning l Hypotheses l General to Specific.
Sparse vs. Ensemble Approaches to Supervised Learning
Learning: Identification Trees Larry M. Manevitz All rights reserved.
Decision tree LING 572 Fei Xia 1/10/06. Outline Basic concepts Main issues Advanced topics.
Decision Tree Learning
Three kinds of learning
Decision Trees IDHairHeightWeightLotionResult SarahBlondeAverageLightNoSunburn DanaBlondeTallAverageYesnone AlexBrownTallAverageYesNone AnnieBlondeShortAverageNoSunburn.
1 MACHINE LEARNING TECHNIQUES IN IMAGE PROCESSING By Kaan Tariman M.S. in Computer Science CSCI 8810 Course Project.
Classification.
Review Rong Jin. Comparison of Different Classification Models  The goal of all classifiers Predicating class label y for an input x Estimate p(y|x)
Information Theory, Classification & Decision Trees Ling 572 Advanced Statistical Methods in NLP January 5, 2012.
Decision tree LING 572 Fei Xia 1/16/06.
Learning: Nearest Neighbor Artificial Intelligence CMSC January 31, 2002.
Machine Learning Chapter 3. Decision Tree Learning
Decision Trees Advanced Statistical Methods in NLP Ling572 January 10, 2012.
Mohammad Ali Keyvanrad
Machine Learning1 Machine Learning: Summary Greg Grudic CSCI-4830.
For Wednesday No new reading Homework: –Chapter 18, exercises 3, 4, 7.
EIE426-AICV1 Machine Learning Filename: eie426-machine-learning-0809.ppt.
DATA MINING LECTURE 10 Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines.
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
CpSc 810: Machine Learning Decision Tree Learning.
CSC 4510 – Machine Learning Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
1 Learning Chapter 18 and Parts of Chapter 20 AI systems are complex and may have many parameters. It is impractical and often impossible to encode all.
For Wednesday No reading Homework: –Chapter 18, exercise 6.
Nearest Neighbor & Information Retrieval Search Artificial Intelligence CMSC January 29, 2004.
Evolutionary Search Artificial Intelligence CMSC January 25, 2007.
Learning with Decision Trees Artificial Intelligence CMSC February 20, 2003.
For Monday No new reading Homework: –Chapter 18, exercises 3 and 4.
CS 8751 ML & KDDDecision Trees1 Decision tree representation ID3 learning algorithm Entropy, Information gain Overfitting.
Decision Trees. What is a decision tree? Input = assignment of values for given attributes –Discrete (often Boolean) or continuous Output = predicated.
MACHINE LEARNING 10 Decision Trees. Motivation  Parametric Estimation  Assume model for class probability or regression  Estimate parameters from all.
Searching by Authority Artificial Intelligence CMSC February 12, 2008.
Chapter 6 Classification and Prediction Dr. Bernard Chen Ph.D. University of Central Arkansas.
CS 5751 Machine Learning Chapter 3 Decision Tree Learning1 Decision Trees Decision tree representation ID3 learning algorithm Entropy, Information gain.
1 Chapter 10 Introduction to Machine Learning. 2 Chapter 10 Contents (1) l Training l Rote Learning l Concept Learning l Hypotheses l General to Specific.
1 Decision Tree Learning Original slides by Raymond J. Mooney University of Texas at Austin.
CS Inductive Bias1 Inductive Bias: How to generalize on novel data.
1Ellen L. Walker Category Recognition Associating information extracted from images with categories (classes) of objects Requires prior knowledge about.
Decision Tree Learning
Machine Learning: Decision Trees Homework 4 assigned courtesy: Geoffrey Hinton, Yann LeCun, Tan, Steinbach, Kumar.
CSC321: Introduction to Neural Networks and Machine Learning Lecture 15: Mixtures of Experts Geoffrey Hinton.
MACHINE LEARNING 3. Supervised Learning. Learning a Class from Examples Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
Outline Decision tree representation ID3 learning algorithm Entropy, Information gain Issues in decision tree learning 2.
Medical Decision Making Learning: Decision Trees Artificial Intelligence CMSC February 10, 2005.
SUPERVISED AND UNSUPERVISED LEARNING Presentation by Ege Saygıner CENG 784.
Decision Tree Learning DA514 - Lecture Slides 2 Modified and expanded from: E. Alpaydin-ML (chapter 9) T. Mitchell-ML.
Learning with Identification Trees
Machine Learning Chapter 3. Decision Tree Learning
Machine Learning: Lecture 3
Machine Learning Chapter 3. Decision Tree Learning
MACHINE LEARNING TECHNIQUES IN IMAGE PROCESSING
MACHINE LEARNING TECHNIQUES IN IMAGE PROCESSING
Artificial Intelligence CMSC January 27, 2004
Machine learning overview
CS639: Data Management for Data Science
Artificial Intelligence CMSC January 25, 2005
Memory-Based Learning Instance-Based Learning K-Nearest Neighbor
Presentation transcript:

Learning with Decision Trees Artificial Intelligence CMSC February 18, 2003

Agenda Learning from examples –Machine learning overview –Identification Trees: Basic characteristics Sunburn example From trees to rules Learning by minimizing heterogeneity Analysis: Pros & Cons

Machine Learning Learning: Acquiring a function, based on past inputs and values, from new inputs to values. Learn concepts, classifications, values –Identify regularities in data

Machine Learning Examples Pronunciation: –Spelling of word => sounds Speech recognition: –Acoustic signals => sentences Robot arm manipulation: –Target => torques Credit rating: –Financial data => loan qualification

Machine Learning Characterization Distinctions: –Are output values known for any inputs? Supervised vs unsupervised learning –Supervised: training consists of inputs + true output value »E.g. letters+pronunciation –Unsupervised: training consists only of inputs »E.g. letters only Course studies supervised methods

Machine Learning Characterization Distinctions: –Are output values discrete or continuous? Discrete: “Classification” –E.g. Qualified/Unqualified for a loan application Continuous: “Regression” –E.g. Torques for robot arm motion Characteristic of task

Machine Learning Characterization Distinctions: –What form of function is learned? Also called “inductive bias” Graphically, decision boundary E.g. Single, linear separator –Rectangular boundaries - ID trees –Vornoi spaces…etc…

Machine Learning Functions Problem: Can the representation effectively model the class to be learned? Motivates selection of learning algorithm For this function, Linear discriminant is GREAT! Rectangular boundaries (e.g. ID trees) TERRIBLE! Pick the right representation!

Machine Learning Features Inputs: –E.g.words, acoustic measurements, financial data –Vectors of features: E.g. word: letters –‘cat’: L1=c; L2 = a; L3 = t Financial data: F1= # late payments/yr : Integer F2 = Ratio of income to expense: Real

Machine Learning Features Question: –Which features should be used? –How should they relate to each other? Issue 1: How do we define relation in feature space if features have different scales? –Solution: Scaling/normalization Issue 2: Which ones are important? –If differ in irrelevant feature, should ignore

Complexity & Generalization Goal: Predict values accurately on new inputs Problem: –Train on sample data –Can make arbitrarily complex model to fit –BUT, will probably perform badly on NEW data Strategy: –Limit complexity of model (e.g. degree of equ’n) –Split training and validation sets Hold out data to check for overfitting

Learning: Identification Trees (aka Decision Trees) Supervised learning Primarily classification Rectangular decision boundaries –More restrictive than nearest neighbor Robust to irrelevant attributes, noise Fast prediction

Sunburn Example

Learning about Sunburn Goal: –Train on labeled examples –Predict Burn/None for new instances Solution?? –Exact match: same features, same output Problem: 2*3^3 feature combinations –Could be much worse –Nearest Neighbor style Problem: What’s close? Which features matter? –Many match on two features but differ on result

Learning about Sunburn Better Solution: –Identification tree: –Training: Divide examples into subsets based on feature tests Sets of samples at leaves define classification –Prediction: Route NEW instance through tree to leaf based on feature tests Assign same value as samples at leaf

Sunburn Identification Tree Hair ColorLotion Used Blonde Red Brown Alex: None John: None Pete: None Emily: Burn NoYes Sarah: Burn Annie: Burn Katie: None Dana: None

Simplicity Occam’s Razor: –Simplest explanation that covers the data is best Occam’s Razor for ID trees: –Smallest tree consistent with samples will be best predictor for new data Problem: –Finding all trees & finding smallest: Expensive! Solution: –Greedily build a small tree

Building ID Trees Goal: Build a small tree such that all samples at leaves have same class Greedy solution: –At each node, pick test such that branches are closest to having same class Split into subsets with least “disorder” –(Disorder ~ Entropy) –Find test that minimizes disorder

Minimizing Disorder Hair Color Blonde Red Brown Alex: N Pete: N John: N Emily: B Sarah: B Dana: N Annie: B Katie: N HeightWeightLotion Short Average Tall Alex:N Annie:B Katie:N Sarah:B Emily:B John:N Dana:N Pete:N Sarah:B Katie:N Light Average Heavy Dana:N Alex:N Annie:B Emily:B Pete:N John:N No Yes Sarah:B Annie:B Emily:B Pete:N John:N Dana:N Alex:N Katie:N

Minimizing Disorder HeightWeightLotion Short Average Tall Annie:B Katie:N Sarah:B Dana:N Sarah:B Katie:N Light Average Heavy Dana:N Annie:B No Yes Sarah:B Annie:B Dana:N Katie:N

Measuring Disorder Problem: –In general, tests on large DB’s don’t yield homogeneous subsets Solution: –General information theoretic measure of disorder –Desired features: Homogeneous set: least disorder = 0 Even split: most disorder = 1

Measuring Entropy If split m objects into 2 bins size m1 & m2, what is the entropy?

Measuring Disorder Entropy the probability of being in bin i Entropy (disorder) of a split Assume -½ log 2 ½ - ½ log 2 ½ = ½ +½ = 1 ½½ -¼ log 2 ¼ - ¾ log 2 ¾ = = ¾¼ -1log log 2 0 = = 0 01 Entropy p2p2 p1p1

Computing Disorder Disorder of class distribution on branch i Fraction of samples down branch i N instances Branch1 Branch 2 N1 a N1 b N2 a N2 b

Entropy in Sunburn Example Hair color = 4/8(-2/4 log 2/4 - 2/4log2/4) + 1/8*0 + 3/8 *0 = 0.5 Height = 0.69 Weight = 0.94 Lotion = 0.61

Entropy in Sunburn Example Height = 2/4(-1/2log1/2-1/2log1/2) + 1/4*0+1/4*0 = 0.5 Weight = 2/4(-1/2log1/2-1/2log1/2) +2/4(-1/2log1/2-1/2log1/2) = 1 Lotion = 0

Building ID Trees with Disorder Until each leaf is as homogeneous as possible –Select an inhomogeneous leaf node –Replace that leaf node by a test node creating subsets with least average disorder Effectively creates set of rectangular regions –Repeatedly draws lines in different axes

Features in ID Trees: Pros Feature selection: –Tests features that yield low disorder E.g. selects features that are important! –Ignores irrelevant features Feature type handling: –Discrete type: 1 branch per value –Continuous type: Branch on >= value Need to search to find best breakpoint Absent features: Distribute uniformly

Features in ID Trees: Cons Features –Assumed independent –If want group effect, must model explicitly E.g. make new feature AorB Feature tests conjunctive

From Trees to Rules Tree: –Branches from root to leaves = –Tests => classifications –Tests = if antecedents; Leaf labels= consequent –All ID trees-> rules; Not all rules as trees

From ID Trees to Rules Hair ColorLotion Used Blonde Red Brown Alex: None John: None Pete: None Emily: Burn NoYes Sarah: Burn Annie: Burn Katie: None Dana: None (if (equal haircolor blonde) (equal lotionused yes) (then None)) (if (equal haircolor blonde) (equal lotionused no) (then Burn)) (if (equal haircolor red) (then Burn)) (if (equal haircolor brown) (then None))

Identification Trees Train: –Build tree by forming subsets of least disorder Predict: –Traverse tree based on feature tests –Assign leaf node sample label Pros: Robust to irrelevant features, some noise, fast prediction, perspicuous rule reading Cons: Poor feature combination, dependency, optimal tree build intractable

Machine Learning: Review Learning: –Automatically acquire a function from inputs to output values, based on previously seen inputs and output values. –Input: Vector of feature values –Output: Value Examples: Word pronunciation, robot motion, speech recognition

Machine Learning: Review Key contrasts: –Supervised versus Unsupervised With or without labeled examples (known outputs) –Classification versus Regression Output values: Discrete versus continuous-valued –Types of functions learned aka “Inductive Bias” Learning algorithm restricts things that can be learned

Machine Learning: Review Key issues: –Feature selection: What features should be used? How do they relate to each other? How sensitive is the technique to feature selection? –Irrelevant, noisy, absent feature; feature types –Complexity & Generalization Tension between –Matching training data –Performing well on NEW UNSEEN inputs