Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.

Slides:



Advertisements
Similar presentations
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
Advertisements

XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
XP #802 - Biased Electrodes S.J. Zweben, R.J. Maqueda, L. Roquemore, R.J. Marsala, Y. Raitses, R. Kaita, C. Bush R.H. Cohen, D.D. Ryutov, M. Umansky (LLNL)
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.
High speed images of edge plasmas in NSTX IEA Workshop Edge Transport in Fusion Plasmas September 11-13, 2006 Kraków, Poland GPI outer midplane – shot.
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Measurements with the KSTAR Beam Emission Spectroscopy diagnostic system Máté Lampert Wigner Research Centre for Physics Hungarian Academy of Sciences.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
Edge Neutral Density (ENDD) Diagnostic Overview Patrick Ross Monday Physics Meeting Monday, March19, 2007.
1 XP720: EBW Emission in H-Mode Plasmas S.J. Diem Presented at the 2007 NSTX Results Review July 23-24, 2007.
XP-746: ELM characterization in NSTX R. J. Maqueda Nova Photonics Inc. and the NSTX Research Team ’07 Results Review July 23-24, 2007 PPPL.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
The study of MARFE during long pulse discharges in the HT-7 tokamak W.Gao, X.Gao, M.Asif, Z.W.Wu, B.L.Ling, and J.G.Li Institute of Plasma Physics, Chinese.
Fast Imaging of Visible Phenomena in NSTX R. J. Maqueda Nova Photonics C. E. Bush ORNL L. Roquemore, K. Williams, S. J. Zweben PPPL 47 th Annual APS-DPP.
TITLE: Scaling of the far SOL turbulence as a function of (1), the average density keeping other plasma parameters constant. (3), the plasma current keeping.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
Flows, Turbulence, and the Edge Plasma in NSTX C.E. Bush, S. Zweben, R. Maqueda, W. Davis, D. Johnson, R. Kaita, H. Kugel, L. Roquemore, G. Wurden and.
1Physics Operators Course, PCS Navigation, D.J. Battaglia, September 15, 2015 Devon Battaglia, Keith Erickson, Dennis Mueller, Stefan Gerhardt, Roger Raman,
Edge Turbulence Imaging During L-H Transitions in NSTX S.J. Zweben, R.J. Maqueda, T. Munsat, D. P. Stotler, T.M. Biewer, C.E. Bush, B. LeBlanc, R. Maingi,
Flow and Shear behavior in the Edge and Scrape- off Layer in NSTX L-Mode Plasmas Y. Sechrest and T. Munsat University of Colorado at Boulder S. J. Zweben.
1 Results and analysis of Gas Puff Imaging experiments in NSTX: turbulence, L-H transitions, ELMs and other phenomena R.J. Maqueda Nova Photonics S.J.
0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion.
Characterization of core and edge turbulence in L- and H-mode Alcator C-Mod plasmas Outline: Alcator C-Mod tokamak Fluctuation diagnostics Low to high.
1 Blobs in the divertor region R. J. Maqueda (Nova Photonics) Although some understanding is emerging on the generation and evolution of blobs from the.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Investigation of fast ion mode spatial structure in NSTX N.A. Crocker, S. Kubota, W.A. Peebles (UCLA); E.D. Fredrickson, N.N. Gorelenkov, G.J. Kramer,
Density fluctuation studies in NSTX using reflectometry and gas puff imaging by NA Crocker*, WA Peebles*, S Kubota*, XV Nguyen*; S Zweben**, T Munsat**,
Study of NSTX Electron Density and Magnetic Field Fluctuation using the FIReTIP System K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
Temporal separation of turbulent time series: Measurements and simulations Nils P. Basse 1,2, S. Zoletnik, M. Saffman, G. Antar, P. K. Michelsen and the.
Edge characterization experiments in the National Spherical Torus Experiment V. A. Soukhanovskii and NSTX Research Team Session CO1 - NSTX ORAL session,
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA CAS K EY L ABORATORY OF B ASIC P LASMA P HYSICS Recent experimental results of zonal flows in edge tokamak.
Relationship Between Edge Zonal Flows and L-H Transitions in NSTX S. J. Zweben 1, T. Munsat 2, Y. Sechrest 2, D. Battaglia 3, S.M. Kaye 1, S. Kubota 4.
J. Boedo, UCSD Fast Probe Results and Plans By J. Boedo For the UCSD and NSTX Teams.
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
High Speed Imaging of Edge Turbulence in NSTX S.J. Zweben, R. Maqueda 1, D.P. Stotler, A. Keesee 2, J. Boedo 3, C. Bush 4, S. Kaye, B. LeBlanc, J. Lowrance.
Monday Physics Meeting, 05/05/081 XP-815 – Characterization of divertor heat flux width and mid-plane SOL widths J-W. Ahn 1, R. Maingi 2, J. Boedo 1, V.
Parallel Correlation of SOL Turbulence S.J. Zweben, F. Scotti, J.W. Ahn, T. Gray, M. Jaworski, S. Kubota, R. Maqueda, N. Mandell, D. Smith, V. Soukhanovskii.
1 Recent Studies of NSTX Edge Plasmas: XGC0 Modeling, MARFE Analysis and Separatrix Location F. Kelly a, R. Maqueda b, R. Maingi c, J. Menard a, B. LeBlanc.
11/12/2004J. Boedo APS 04 Reciprocating Probe Edge/SOL Profiles in NSTX J. Boedo H. Kugel, D. Rudakov, H. Ji, T. Carter, N. Crocker, D. Rudakov, M. Umansky,
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Changes in Edge Turbulence with  * and Toroidal Rotation Input in NSTX M. Gilmore, S. Kubota, W.A. Peebles, and X.V. Nguyen Electrical Engineering Dept.,
Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
Distributions of plasma parameters and observation of intermittency in edge plasma of SUNIST W H Wang, Y X He, and SUNIST Team Department of Engineering.
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
Biased Electrode Experiment S.J. Zweben, R.J. Maqueda, L. Roquemore, R.J. Marsala, Y. Raitses, R. Kaita, C. Bush R.H. Cohen, D.D. Ryutov, M. Umansky (LLNL)
V. A. Soukhanovskii Lawrence Livermore National Laboratory H. W. Kugel, R. Kaita, A. L. Roquemore Princeton Plasma Physics Laboratory NSTX Research Team.
Investigating small-scale edge turbulence with GPI Noah Mandell, Stewart Zweben, Walter Guttenfelder, Yang Ren, Steve Sabbagh NSTX T&T Forum /25/2015.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Initial Results from the Scintillator Fast Lost Ion Probe D. Darrow NSTX Physics Meeting February 28, 2005.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Scaling of impurity (Ne & Ar) transport in beam heated NSTX H-mode discharges L. F. Delgado-Aparicio, D. Stutman, K. Tritz, and M. Finkenthal The Johns.
XP 514: Thermal Electron Bernstein Wave Conversion to O-Mode at GHz G. Taylor, P. Efthimion, J. Wilgen, J. Caughman Goals for this experiment: –Measure.
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
T. Biewer, Sep. 21 st, 2004 NSTX Results Review of 11 Dependence of Edge Flow on Magnetic Configuration in NSTX T.M. Biewer, R.E. Bell, D. Gates,
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
Gas Puff Imaging (GPI) diagnostic Summary of C-Mod GPI results GPI diagnostic set-up in NSTX GPI data from NSTX ‘01 run Interpretation of GPI signals Tentative.
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
Presentation transcript:

Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06

2 Outline Background XP Plan Diagnostic List

3 Motivation How are these density limit phenomena* related to changes in edge turbulence ? disruptions divertor detachment poloidal detachment increased edge transport *Greenwald, M. Plasma Phys. Control. Fusion 44 (2002) R27-R80 Study density limit in the simplest possible NSTX plasma, i.e. Ohmic plasmas, without momentum input and heating introduced by NBI. If the density limit can not be reached Ohmically, then add NBI if that will allow the density limit to be reached.

Background

5 GPI setup on NSTX for 2006 –High speed imaging of edge plasma with Phantom 7 camera. (Maqueda) –Radial and poloidal information from chords Radial Poloidal H1 H2 H3 T7 T6 T5 C T3 T2 T1 H5 H6 H7 The chords are arranged to detect light emitted poloidally and radially at the plasma edge. The spatial resolution is 1-2cm The 23cm x 23cm viewing area is imaged into a 800pixel x 1000 pixel coherent fiber bundle. Each fiber images a 2cm diameter area of the plasma The signals from the fiber optical cables are then digitized at 500kHz

6 Results from NSTX Ohmic Density Scan XP 203 (S.Kaye) showed that high densities (0.8 n G ) could be achieved for Ohmic Deuterium plasmas after boronization. For He the Greenwald density is surpassed (1.1 n G ) (Figure 1) Little change was observed in edge turbulence in this scan (Zweben et al, Nucl. Fusion 2004) However, the density limit was not reached in these Ohmic plasmas Figure 1*: Graph of line averaged density versus Greenwald density in Ohmic Helium and Deuterium plasmas before and after boronization. The post-boronization plasmas achieved higher densities *Sabbagh, S.A. et al, Nuclear Fusion Vol. 41, No. 11, (2001)

7 Results from NSTX NBI Density Scan In XP 604, “Density Scan” by Boedo densities ≤ 1.2n G were achieved Using the voltage signal from PMTs in the GPI system’s chord diagnostic, the relative fluctuation level  I/I increases with increasing density. The cross correlation coefficient between two nearby radial channels also increases with increasing density. This indicates an increase in the size of the turbulence as the density is increased.

8 Results from XP 604

9 Other Results on Density Limits On DIII-D, intermittency increased with density but intermittent events carried a large fraction of local density at all radii and densities measured [1] On C-Mod, as density increased blobs move in past the separatrix and edge plasma becoming intermittent [2] Modeling of density limit is in progress based on blobs / intermittency [3] [1] Boedo, J. A. et al.,Phys. Plasmas V10, No 5, (2003) [2] LaBombard, B. et al., Nucl. Fusion 45 (2005) [3] D’Ippolito and Myra-PoP 2/06

10 What are the expected results? The density scan may reveal some change in the edge turbulence as density exceeds Greenwald density in Ohmic plasmas. Measurements from other diagnostics may also help to put together a picture of edge turbulence near the Ohmic density limit, i.e. reflectometer, Firetip, CHERS, Langmuir probes (scanning and fixed), ERD.

XP Plan

12 Desired Conditions in NSTX A density scan in Ohmic, lower single null deuterium plasmas in 1/2 day at B=3.5kG and I=0.6 MA (current and field are consistent with GPI viewing angle). Constant outer gap = 5 cm SGI and LFS (bay K) fueling required to increase density If possible after boronization since it allows for higher densities to be reached in NSTX 7.5 min He glow is also desired A density range from 0.4G-1.3G (or higher) (n G =5.3x10 19 m 0.6 MA)

13 Experimental Run Plan Reference shot # [I p =600kA, B T =3.5kG,  ~1.7, outer gap=8cm, aspect ratio=1.3, flattop=250ms] Shot list: ~ 0.6 n G (1 shot to establish baseline same as ) ~ 1.0 n G (1 shot, start with SGI plenum pressure of ~ 1200 Torr) ≥ 1.2 n G (2 shots, raise SGI pressure to ~ 2000 Torr, add LFS 50 Torr-L/s to SGI pressure of 2400 Torr to get higher densities if necessary) if density limit is reached, repeat highest density cases and then reduce puff to repeat lower density cases if density limit is not reached at highest possible gas injection, try same density scan with small amount of NBI Total number = 8 good shots (approx 0.5 run day)

14 Diagnostics GPI High Speed Camera (Maqueda) Fast probe (Boedo) Reflectometers (Kubota) Divertor Langmuir probes (Bush) Thomson scattering* (LeBlanc) ChERS,ERD* (Bell) Plasma TV (Bush) Divertor fast camera (Roquemore) *Desired but not required diagnostics

15 Planned Analysis Standard EFIT/LRDFIT and TRANSP analysis Chord and probe will be analyzed to determine the turbulence level, relative fluctuation, autocorrelation time, radial and poloidal correlation lengths as well as the intermittency at the increased density. Blob frequency will also be characterized, from camera data, versus density, beam power and other parameters. Analysis of turbulence data will be compared with data from L- mode and H-mode plasmas.

16

17